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Gács’s coarse-grained algorithmic entropy leverages universal computation to quantify the information content
of any given physical state. Unlike the Boltzmann and Gibbs-Shannon entropies, it requires no prior commitment
to macrovariables or probabilistic ensembles, rendering it applicable to settings arbitrarily far from equilibrium.
For measure-preserving dynamical systems equipped with a Markovian coarse graining, we prove a number of
fluctuation inequalities. These include algorithmic versions of Jarzynski’s equality, Landauer’s principle, and the
second law of thermodynamics. In general, the algorithmic entropy determines a system’s actual capacity to do
work from an individual state, whereas the Gibbs-Shannon entropy gives only the mean capacity to do work
from a state ensemble that is known a priori.
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I. INTRODUCTION

Many of the most successful theories in physics have an
initial value formulation, in which the Universe is fully de-
termined by its initial conditions and dynamical equations of
motion. The second law of thermodynamics, despite being
widely considered one of the most important facts of nature,
does not appear explicitly in such formulations. Not only is it
absent among the dynamical equations, but its irreversibility
stands in contrast to the equations’ charge-parity-time (CPT)
symmetry [1]. Nonetheless, if the second law is to hold for
such formulations, then it must somehow follow from the
initial condition and dynamics [2–4].

Another difficulty with the second law is its scope of
applicability. Informally, it states that the entropy of an iso-
lated physical system tends to increase. In order to apply this
statement broadly, we require an unambiguous nonequilib-
rium definition of entropy. Focusing on classical (as opposed
to quantum) mechanics for simplicity’s sake, our definition
should not depend on a prior choice of macrovariables or
probabilistic ensemble (as the Boltzmann-Gibbs-Shannon en-
tropies do). Moreover, the second law should not depend on
properties such as nonequilibrium steady state or local de-
tailed balance, that only hold in limited settings [5–7].

Thus, we seek to define entropy as a function of the in-
dividual states in phase space, in such a way that a suitable
initial value formulation makes it increase over time. Our task
is made possible by two major insights from the scientific lit-
erature: one originating from the theory of dynamical systems,
and the other from algorithmic information theory (AIT).

*Contact author: aramebtech@gmail.com
†http://www.hutter1.net/

The first insight is the existence of Markovian coarse grain-
ings. These are memoryless partitions of a dynamical system’s
phase space into discrete cells. In more detail, we mean that
the probability distribution of the system’s coarse-grained
state at any future time, conditional on its past and present,
is given by evolving the dynamics forward from a uniform
(i.e., proportional to the Liouville measure) distribution over
the present cell. Whenever this property holds, we can take a
discrete view of the system as a time-homogeneous Markov
process. Taking the Liouville measure of each cell yields a
discrete stationary measure for this process [8].

It remains an open problem to characterize when a coarse
graining is approximately Markovian [4,9–13]. To get some
intuition, we can study toy systems whose coarse grain-
ing is exactly Markovian. For instance, Altaner and Vollmer
[8] introduce the network multibaker maps: these are time-
reversible deterministic chaotic dynamical systems, with
microscopic randomization only in the initial state, whose
coarse graining emulates a wide variety of Markov chains.
To illustrate how this occurs, we present a simplified ver-
sion in Appendix A. These maps rigorously demonstrate that
macroscopic irreversibility is compatible with microscopic re-
versibility, while also hinting at conditions under which more
realistic systems might be approximately Markovian.

The Markov assumption is the basis for much of stochastic
thermodynamics [7,8,14–17], a powerful modern framework
that replaces continuous-state dynamical systems by (usually
discrete-state) Markov processes. These are easier to analyze:
for Markov processes, the nondecrease of Gibbs-Shannon
entropy is a straightforward and mathematically rigorous the-
orem, applicable to probability distributions arbitrarily far
from equilibrium ([18], Sec. 4.4).

However, while Markovian coarse grainings motivate a
probabilistic description of the dynamics, nonequilibrium
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states may lack an appropriate, nonsubjective ensemble
description, especially if they arise from an intricate com-
putation; we elaborate on the reasons in Sec. IV B. To get
an ensemble-free definition of entropy, as a function of in-
dividual physical states, we turn to a computability-based
notion from the AIT literature. Intuitively speaking, the con-
nection between physics and computability arises because the
coarse-grained dynamics of our Universe are believed to have
computational capabilities equivalent to a universal Turing
machine [19–22].

Gács [23] defines the coarse-grained algorithmic entropy of
any individual state: roughly speaking, it is the number of bits
of information that a fixed computer needs in order to identify
the state’s coarse-grained cell. For example, a state in which
all particles are concentrated in one location would have low
entropy, because the repeated coordinates can be printed by a
short program. If the coarse graining in question is Markovian,
then Levin’s [24] law of randomness conservation says that
the algorithmic entropy seldom decreases. In physical terms,
we will come to see this as a vast generalization of the second
law of thermodynamics.

In mathematical terms, it is an integral fluctuation relation,
meaning that it bounds an expectation of the exponentiated
entropy production. It is a statistical law that allows occasional
small decreases in entropy. In stochastic thermodynamics,
integral fluctuation relations are often derived as averages
of corresponding detailed fluctuation relations on individual
state transitions [14]. In Appendix B we state and prove
the detailed fluctuation relations for randomness conserva-
tion, and show that they imply the integral relations. The
remainder of this article explores the physical consequences
of these relations, particularly when dealing with information-
processing systems. Thus, we plant the seeds for a new
computability-based view of thermodynamics, in which the
entropy is a function of individual states rather than probabil-
ity distributions.

Our article is structured as follows. Section II places our
work in the context of some relevant literature. Section III
reviews some notation, definitions, and useful facts.

Section IV presents our theoretical contributions. Broadly
speaking, we reformulate some aspects of stochastic ther-
modynamics in terms of Gács’s coarse-grained algorithmic
entropy. Section IV A adapts Gács’s definition to the Marko-
vian setting, where Levin’s [24] randomness conservation
applies. Section IV B compares the Gibbs-Shannon and al-
gorithmic entropies, presenting conditions under which they
coincide. When they do not coincide, we argue that a system’s
capacity to do work is in fact determined by the algorithmic
entropy.

Section IV C introduces the concept of reservoirs that can
exchange heat and work, and derives fluctuation inequalities
for the algorithmic entropy flow and production. Section IV D
specializes these inequalities to the case of one reservoir
at constant temperature. One of the inequalities generalizes
Kolchinsky’s [25] recent lower bound on the heat flow dur-
ing a computation, while others can be seen as algorithmic
versions of Jarzynski’s equality [26] and Landauer’s principle
[27], describing the exchange of heat, work, and information.

Section IV E extends randomness conservation to settings
with variable dynamics or long time horizons, resulting in a

fully general nonequilibrium second law of thermodynamics.
As a special case, we recover a result of Janzing et al. [28],
but with a different interpretation: we conclude that entropy is
only produced when the coarse-grained dynamics are random.
Our Corollary 2 is arguably the most complete statement of
the second law to date: it uses an ensemble-free notion of
entropy, applies to arbitrary time intervals on a trajectory (but
not its time-reversal), and allows fluctuations (which include
Poincaré recurrence [29]).

Section V presents some more applications. Section V A
briefly discusses the effective dynamics of open systems,
and introduces a few useful tricks for constructing exam-
ples. Section V B applies our algorithmic second law to get
an especially straightforward analysis of Maxwell’s demon.
Section V C discusses the thermodynamic costs of three kinds
of information processing: randomization, computation, and
measurement. Finally, in order to demonstrate how a defi-
ciency of algorithmic entropy serves as a resource, Sec. V D
models an information-theoretic analog of a heat engine,
which takes compressible strings as fuel.

Section VI concludes with some possible directions for
further research. The core mathematical ideas that we build
upon, Markovian coarse grainings and randomness conserva-
tion, are detailed in the appendices. While they are based on
previous work [8,24,30,31], Appendix A considerably simpli-
fies the network multibaker maps; meanwhile, Appendix B
states and proves randomness conservation in a manner that
more closely parallels the thermodynamic fluctuation theo-
rems [14]. We hope that these ideas become more accessible
as a result.

II. BACKGROUND

When Clausius first coined the term “entropy,” thermody-
namics was a macroscopic theory of work and heat transfer.
The connection to information theory first arose in Szilard’s
response to Maxwell’s famous thought experiment, in which
a “demon” appears to violate the second law of thermo-
dynamics by efficiently and intelligently tidying a system.
Szilard’s great insight was that any such tidying process must
necessarily process information about the system. Once this
information is correctly accounted for, the second law is re-
stored [32].

This accounting is usually done in an ad hoc manner.
It remains difficult to define entropy in a unified manner
that applies straightforwardly to Maxwell’s demon and other
nonequilibrium systems. The old definitions of Clausius and
Boltzmann depend on specially chosen macrovariables, such
as temperature, pressure, and chemical composition; these are
well suited to traditional equilibrium systems, but not to the
demon’s information storage.

Overly fine-grained microscopic definitions of entropy are
equally unsuitable. Since the laws of physics are deterministic
and time-reversible, fine-grained information can never be
created or destroyed. Indeed, in classical mechanics, Liou-
ville’s theorem implies that the differential Gibbs-Shannon
entropy is constant under Hamiltonian evolutions [33]. While
quantum mechanics is beyond the scope of our article, we note
that the von Neumann entropy is likewise constant under uni-
tary evolutions. Although Zurek ([34], Appendix C) predicted
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a deterministic increase in the algorithmic entropy, which was
later proved by Janzing et al. [28], Gács [23] shows that this
increase is negligible in practice; we will extend these results
in Corollary 1.

A more suitable definition lies between the macroscopic
and microscopic extremes, as one often finds a mesoscopic
coarse graining that is approximately Markovian. A standard
approach truncates the canonical positions and momenta, thus
coarse graining phase space into 6N-dimensional hypercubes
of measure h3N , h being Planck’s constant and N the number
of particles ([35], Sec. 12 and [17], Sec. 2.7). In this coarse-
grained view, the dynamics are effectively random, allowing
the entropy to increase at up to the Kolmogorov-Sinai rate
[17,36,37]. Nicolis and Nicolis [9] and Werndl [10] study
some chaotic systems with Markovian coarse grainings. In
quantum mechanical settings, Zurek [38] argues that decoher-
ence has a similar effect.

At present, the Markov assumption appears to be necessary
for much of thermodynamics. Indeed, due to CPT symmetry,
entropy increase theorems that proceed directly from Hamilto-
nian dynamics tend to be too weak. Gács [23] discusses a few
of these. For example, ergodic systems are known to converge
toward maximum entropy in both the infinite future and the
infinite past. This fact does not distinguish the two temporal
directions and makes no comment on finite time intervals;
in particular, it tells us nothing about how the entropy of
yesterday should compare to the entropy of tomorrow.

He also discusses another kind of result, in which starting
from a “typical” state guarantees that the entropy never falls
below its initial value. Kawai et al. [39] describe a Hamilto-
nian formulation (see also Esposito et al. [40] for a quantum
mechanical version), in which the “typical” state is one where
the environment is at equilibrium. For the Universe as a whole,
Albert [3] envisions the Big Bang to meet the criteria for a
typical state. The problem with this type of argument is that
it only works once: subsequent states, having nonminimal
entropy, are necessarily “atypical.” From there, we have no
reason to expect further increases in entropy.

Instead, we need the initial state to have the stronger
property that its subsequent transitions forever retain “typi-
cal” statistics, long after the state itself becomes atypical. In
other words, the coarse-grained trajectory should be a time-
homogeneous Markov process. By modeling physical systems
as Markov processes, we can formulate the second law over
arbitrary time intervals.

From now on, we refer to coarse-grained states or cells
interchangeably. In stochastic thermodynamics, the Gibbs-
Shannon entropy is defined as a function, not of individual
states, but of ensembles that assign a probability μ(x) to
each coarse-grained state x [7,14–17]. Defining the Shannon
codelength or stochastic entropy (in bits) of each state x by

Ĥ (x, μ) := log2
1

μ(x)
,

the Gibbs-Shannon entropy is its expectation

H (μ) := 〈Ĥ (X, μ)〉X∼μ =
∑

x

μ(x) log2
1

μ(x)
.

Note that these entropies are undefined for individual states
x, unless a distribution μ is specified. Nonequilibrium choices

of μ are typically arrived at by evolving a Markov process
starting from a probabilistically prepared initial state. Such
approaches have led to a number of major developments in the
thermodynamics of information and computation [21,41–46].
Nonetheless, the physical meaning of μ is not always clear
[47].

Entropy’s main role in physics is to quantify a system’s
capacity to do work. Inspired by a thought experiment in
which compressible data are used to do physical work, Ben-
nett [48] argues that a more precise and general definition
of entropy should leverage universal computation to infer
the best description for any given state. Therefore, he de-
fines the algorithmic entropy of an individual state x to be
its Solomonoff-Kolmogorov-Chaitin description complexity
K (x), i.e., the length of the shortest program that outputs x
on a fixed universal computer. Li and Vitányi [49] study this
function K in detail.

Zurek [34] develops its physical interpretation and proves
that

H (μ)
+= 〈K (X | μ)〉X∼μ, (1)

where the equality holds up to an additive constant that does
not depend on μ. After obtaining a measurement result x
from a physical system, Zurek defines its entropy to be the
sum K (x) plus the posterior Gibbs-Shannon entropy given x.
While this definition appears quite general, its dependence on
measurements takes away from the objectivity of Bennett’s
definition.

Gács [23] proposes a more natural refinement of Bennett’s
definition. First, he clarifies that the argument x is a coarse-
grained state. Second, when states occupy different Liouville
measures π (x) in the underlying phase space, he adds a cor-
rection term, defining the algorithmic entropy as

Sπ (x) := K (x) + log2 π (x). (2)

We can view Gács’s definition (2) as a special case of Zurek’s,
in which the measurement is a fixed function of the fine-
grained state. If this function’s range is countable, its elements
correspond to cells of a coarse graining. Committing to a
fixed coarse graining removes the need to actually perform
measurements, making (2) purely a function of the individual
coarse-grained state x. Thus, measurements are not built into
the definition (2), freeing us to consider arbitrary measure-
ments as part of the dynamics, as we illustrate in Sec. V B.
We can also consider uncertain or random mesostates, as
in stochastic thermodynamics: for random X , the entropy
Sπ (X ) = K (X ) + log2 π (X ) becomes a random variable that
depends on the value of X .

In settings where the Gibbs-Shannon and algorithmic en-
tropies disagree, we must clarify their respective relationships
to a system’s capacity for work. In Sec. IV D we will see
that the algorithmic entropy fundamentally determines the
maximum amount of work that can be extracted from a
specific physical state. Equation (1) then implies that the
Gibbs-Shannon entropy measures the average capacity for
work, given probabilistic knowledge of the state. In Sec. IV B
we elaborate on this distinction. Since the algorithmic entropy
does not depend on averaging or priors, it carries a more
objective physical meaning, which carries over to nonequi-
librium settings where we lack probabilistic knowledge.
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An important caveat is that the algorithmic entropy de-
pends on a choice of universal computer. The dependence is
bounded by the length of a compiler or interpreter between
any pair of computers that we want to compare; fortunately,
for realistic microprocessors, this length appears to be quite
small. Indeed, entropy is measured in logarithmic units, such
as bits, nats, or Joules per Kelvin [50]. The conversion rates
are given by

1 bit = kB ln 2 = 9.57×10−24 J K−1, (3)

where kB is Boltzmann’s constant, equivalent to 1 nat.1 Pes-
simistically, consider a pair of computers, whose interpreters
in each direction compress to about 12 GiB (i.e., 12×233 bits).
This is much larger than any practical interpreter known to
the authors; and yet, even languages as distant as these would
agree on the entropy of every system to within

12×233×9.57×10−24 J K−1 < 10−12 J K−1.

For macroscopic systems, this is a negligible difference.
Of course, our notion of a “realistic microprocessor” should
include physical size and resource constraints. Inspired by
the Turing machine model, we imagine a microscopic control
head operating on infinite-length tapes. Since its head is small,
such a machine cannot cheat by “hard coding” arbitrary data
in its specification. Thus, the laws of nature may well deter-
mine which strings are considered simple or complex [19,20].
We hope to make this argument rigorous in future work; see
Zurek ([34], Appendix B) for a discussion of related issues.

Our article can also be compared with more recent works.
Baez and Stay [53] apply thermodynamics to AIT, whereas
we apply AIT to thermodynamics. Kolchinsky and Wolpert
[21] relate thermodynamic costs to description complexity;
however, their approach depends on specific probabilistic pri-
ors, whereas we derive universal bounds from Levin’s [24]
randomness conservation law. Kolchinsky [25] proves an al-
gorithmic detailed fluctuation inequality, which we show to
follow from one of our own.

Throughout this article, we assume the existence of Marko-
vian coarse grainings and a suitable universal computer.
The former allows us to substitute physical systems with
their Markov process counterparts. Our modeling approach
amounts to a minimalist version of stochastic thermodynam-
ics, abstracting away many details of the physics to produce
simple rigorous statements under minimal assumptions.

III. PRELIMINARIES

We start with some notation. Z, Q, and R denote the
integers, rational numbers, and real numbers, respectively.
Z+, Q+, and R+ denote their respective non-negative subsets.
Zm := {0, 1, . . . , m − 1} denotes the first m elements of Z+.
Let B := {0, 1} � Z2; its Kleene closure B∗ is the set of all
finite-length binary strings. For a string x ∈ B∗, |x| denotes its

1The 2019 redefinition of SI units made kB :=
1.380649×10−23 J K−1 a “defining constant” [51]. Effectively,
the Kelvin became a derived unit, equal to exactly 1.380649×10−23

Joules per nat [52].

length in bits. For a set A, |A| denotes its cardinality. Juxta-
position of strings xy indicates their concatenation. When f
is a two-argument function, f (·, x) denotes the one-argument
function that maps y �→ f (y, x).

The capital letters X,Y refer to random variables, while the
lowercase variables x, y refer to the specific values they take
on. Expectations of random variables are denoted by angled
brackets 〈·〉. The probability of an event E , conditional on
another event F , is denoted by Pr(E | F ). The expression
Pr(Y | X ) is interpreted as a random variable, whose value
is Pr(Y = y | X = x) whenever Y = y and X = x. Similarly,
the conditional expectation 〈· | X 〉 is a random variable that
depends on the value of X .

A. Stochastic matrices

Stochastic thermodynamics takes place on coarse-grained
state spaces, which we represent as countable (i.e., finite or
countably infinite) sets X ,Y . Probabilities of transitions from
x ∈ X to y ∈ Y are given by a stochastic matrix P : Y × X →
R+, satisfying

∀x ∈ X ,
∑
y∈X

P(y, x) = 1.

Its action on a discrete measure π : X → R+ takes it to a
successor measure Pπ : Y → R+, given by

Pπ (y) :=
∑
x∈X

P(y, x)π (x). (4)

If
∑

x∈X π (x) = 1, π is called a probability measure (or dis-
tribution, mixture, or ensemble), and it follows that Pπ is also
a probability measure.

Given π and P such that Pπ is nonzero everywhere, we
define the dual matrix P̃ : X × Y → R+ [54,55] by

P̃(x, y) := P(y, x)π (x)

Pπ (y)
. (5)

Equations (4) and (5) imply that P̃ is stochastic and satisfies
P̃(Pπ ) = π .

Note that if x is sampled according to π , and y according
to P(·, x), then by Bayes’s rule, P̃(x, y) gives the reverse
transition probability of x given y. However, we will often
be interested in nonequilibrium settings, where π is fixed and
different from the distribution of x. In that case, the reverse
probabilities are sensitive to the distribution of x, and not
equal to P̃ in general.2

2On the other hand, P can be viewed as the coarse-grained evolu-
tion of an underlying dynamical system, as in Appendix A. Suppose
that at a time t0, the system’s state is set to a continuous distri-
bution over its phase space. There is evidence to suggest that the
resulting coarse-grained trajectory will evolve forward by P at times
t > t0 + tm, and backward by P̃ at times t < t0 − tm. The unpublished
manuscript [56] proves this for certain extensions of the multibaker
map, establishing a time-reversal symmetry centered near t0. The
“microscopic mixing time” tm depends on the initial distribution’s
smoothness, and can be far shorter than the time needed to reach
macroscopic equilibrium (i.e., “heat death”). We can think of t0
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For the remainder of this article (except in Appendix B),
we take X = Y . If in addition, Pπ = π , then we say P is
π-stochastic, or π is stationary for P. In that case, P̃ is also
π -stochastic because P̃π = P̃(Pπ ) = π . Doubly stochastic
is a common synonym for �-stochastic, where � denotes the
counting measure, i.e., �(x) := 1 for all x.

Finally, we say that P satisfies detailed balance with re-
spect to π if

∀x, y ∈ X , P(x, y)π (y) = P(y, x)π (x). (6)

This is a strong condition, equivalent to having both Pπ = π

and P = P̃.
In physical settings, π is the Liouville measure, and P̃ is the

coarse-grained dynamics after CPT inversion. Therefore, de-
tailed balance occurs when all parity-odd microvariables (e.g.,
momenta) are coarse grained away, leaving only bidirectional
transitions [5,7]. In this article, π is stationary by Liouville’s
theorem, but we allow detailed balance to fail; i.e., Pπ = π ,
but possibly P �= P̃.

B. Markov processes

An X -valued stochastic process is a collection of X -valued
random variables indexed by continuous time (Xt )t∈R+ or
by discrete time (Xt )t∈Z+ . We say it is a time-homogeneous
Markov process if

s � t ⇒ Pr(Xt | X�s) = Pr(Xt | Xs) = Pt−s(Xt , Xs),

where the stochastic matrix P�t : X × X → R+ is called the
transition matrix for time steps of duration �t . The first
equality is called the Markov property, while the second ex-
presses time homogeneity. For any finite sequence of times
0 = t0 < t1 < · · · < tn, the chain rule of probability yields

Pr
(
Xt0 , . . . , Xtn

) = Pr(X0)
n∏

i=1

Pti−ti−1

(
Xti , Xti−1

)
. (7)

A discrete-time Markov process is also called a Markov chain.
For �t ∈ Z+, we have

P�t = (P1)�t . (8)

Therefore, (7) implies that a Markov chain’s joint probability
distribution is uniquely determined by the distribution of X0

and the matrix P1; these are its initial condition and dynamics,
respectively. A continuous-time Markov jump process is de-
scribed similarly, with P�t (�t ∈ R+) instead being generated
by a transition rate matrix [7].

C. Stochastic thermodynamics

We now present a minimalist version of the stochastic ther-
modynamics framework [7,14–17]. Classical physics studies
continuous-time trajectories over the continuous phase space
of a dynamical system. The system’s evolution is determinis-
tic and reversible, and preserves the phase space’s Liouville
measure. By coarse graining the phase space into discrete
cells, we can instead describe the trajectory as a stochastic

as analogous to the Big Bang, and P̃ as a coarse graining of the
conjectured CPT-inverted dynamics preceding it [4,57,58].

process (in either discretized or continuous time), that jumps
between a countable set of coarse-grained states X . By inte-
grating the Liouville measure over each cell x ∈ X , we obtain
a discrete measure π : X → R+.

We assume the coarse-grained trajectory is a Markov pro-
cess, whose transition probabilities P�t (y, x) are equal to the
fraction of the cell x, whose evolution after time �t is in the
cell y. This assumption is an intense area of study [8–13],
but in stochastic thermodynamics it is commonly taken for
granted. It then follows that the Markov process is time-
homogeneous and π -stochastic.

To keep things simple and general, we do not make any
sort of steady state or detailed balance assumption. At this
stage, we do not even define the concepts of energy or heat.
In this generic setting, the stochastic entropy of a state x,
sampled from a probability distribution μ, relative to the (not
necessarily normalizable) stationary measure π , is defined by

Ĥπ (x, μ) := log2
π (x)

μ(x)
. (9)

To avoid arithmetic singularities, assume π and μ are nonzero
everywhere. We may omit the subscript π in cases where
it equals the counting measure �. In practice (e.g., see
Sec. IV C), the nonuniformity of π comes from modeling
environment interactions. Thus, we can think of the contri-
butions log2

1
μ(x) and log2 π (x) as the entropy (in bits; see

(3)) of a base system and its environment, respectively. The
generalized Gibbs-Shannon entropy of μ is its mean stochastic
entropy (i.e., negated Kullback-Leibler divergence) relative to
π :

Hπ (μ) := 〈Ĥπ (X, μ)〉X∼μ =
∑
x∈X

μ(x) log2
π (x)

μ(x)
. (10)

The stochastic entropy satisfies the following integral fluctua-
tion theorem.

Theorem 1. Let X,Y be X ,Y-valued random variables,
and P(y, x) := Pr(Y = y | X = x). If the measures π,μ :
X → R+, ν : Y → R+, and Pπ are nonzero everywhere,
then 〈

2Ĥπ (X, μ)−ĤPπ (Y, ν)
∣∣X 〉 = P̃ν(X )

μ(X )
.

Proof. By definition,〈
2Ĥπ (X, μ)−ĤPπ (Y, ν)

∣∣X 〉 =
〈

π (X )ν(Y )

Pπ (Y )μ(X )

∣∣∣∣X〉
=

〈
P̃(X, Y )ν(Y )

P(Y, X )μ(X )

∣∣∣∣X〉
=

∑
y∈Y

P(y, X )
P̃(X, y)ν(y)

P(y, X )μ(X )

=
∑

y∈Y P̃(X, y)ν(y)

μ(X )

= P̃ν(X )

μ(X )
.

�
In Theorem 1, μ and ν need not be related to the distribution
of (X,Y ). Roldán et al. [59] apply it to obtain martingales,
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essentially by setting μ := P̃ν. However, it is standard to let μ

be the initial state distribution. Under the law of a π -stochastic
matrix P, the distribution then evolves to Pμ. Therefore, the
stochastic entropy production during a state transition x → y
is defined by

�Ĥπ := Ĥπ (y, Pμ) − Ĥπ (x, μ).

By the law of total expectation, and Theorem 1 with Pπ = π

and ν := Pμ,

〈2−�Ĥπ 〉 = 〈〈2−�Ĥπ | X 〉〉 =
〈

P̃Pμ(X )

μ(X )

〉
X∼μ

=
∑
x∈X

P̃Pμ(x) = 1. (11)

By Jensen’s inequality, it follows that the Gibbs-Shannon
entropy production is non-negative:

�Hπ := Hπ (Pμ) − Hπ (μ) = 〈�Ĥπ 〉 � 0.

These results are quite general, applying to distributions that
are arbitrarily far from equilibrium. Their main downside
is that the stochastic (9) and Gibbs-Shannon (10) entropies
depend on a choice of distribution μ and hence are not
well-defined functions of the individual state x. While ther-
modynamic ensembles certainly have their place, Sec. IV B
discusses settings in which an adequate choice of μ is not
readily available. To get an ensemble-free notion of entropy,
we now turn to algorithmic information theory.

D. Algorithmic information theory

A set of strings is self-delimiting if no element is a proper
prefix of another. For an arbitrary set A, an encoding is an
injective function f : A → B∗; we say f is self-delimiting if
its range is.

For integers n ∈ Z+, a self-delimiting encoding n ∈ B∗ is
given recursively by

n :=
{
0 if n = 0,

1|B(n)|B(n) if n > 0,
(12)

where B(n) is the standard binary encoding of n without its
leading 1. For example,

9 = 13001 = 1111001 = 11101001 = 11101001.

For strings x ∈ B∗, a self-delimiting encoding is given by
x := |x|x, equal to B−1(x) without its leading 1. For A, B ⊂
B∗, let AB := {ab : A ∈ A, b ∈ B}. If A is self-delimiting, the
pair (a, b) is uniquely decodable from ab ∈ AB. If both A and
B are self-delimiting, then so is AB.

A prefix machine T is a computer whose set of valid halting
programs PT ⊂ B∗ is self-delimiting. Let T (p) denote the
output of T on p ∈ PT , and write T (p) = ∅ for p ∈ B∗ \ PT .
We fix a universal prefix machine U with the following prop-
erty: for every prefix machine T , there exists xT ∈ B∗, such
that for all y, p ∈ B∗,

U (y xT p) = T (yp).

See Hutter et al. [60,61] for the details of this construction,
or Li and Vitányi [49] for a similar approach. Since yp is
uniquely decodable, from now on we instead write (y, p).

The description complexity of a string x ∈ B∗, given side
information y ∈ B∗, is

K (x | y) := min
p

{|p| : U (y, p) = x}.

When y is the empty string, K (x | y) becomes the uncondi-
tional description complexity K (x). Whenever an encoding is
implied, we may write nonstring objects in place of x or y. For
example, a finite set is encoded by a lexicographic listing of
its elements. A computable function (or measure or matrix)
is encoded by any program that computes it in the sense of
(17) below. While the resulting complexity depends on which
program is chosen, our derivations remain valid provided that
repeated mentions of a function always refer to the same
program. We also assume fixed encodings for the countable
sets Z, Q, and X , so that their elements have well-defined
description complexities. Complexities and entropies in this
article are measured in units of bits; accordingly, we use base
2 logarithms.

(In)equalities that hold up to constant additive terms or
multiplicative factors are expressed by writing a + or × on

top of the (in)equality sign. For example, f (x)
+
< g(x) and

f (x)
×
< g(x) mean f (x) < c + g(x) and f (x) < c · g(x), re-

spectively, for some constant c. By “constant,” we mean that c
is a function of only the parameters that we explicitly declared
as fixed, such as the universal computer U and the encodings
of important sets. We say x is simply describable from an

optional context y, if K (x | y)
+= 0.

We review some properties of K . Since programs are self-
delimiting, we have Kraft’s inequality∑

x∈B∗
2−K (x|y) < 1. (13)

There exists a decoder p for (12), such that for all n ∈ Z+,
U (pn) = n. Hence,

K (n) � |pn| += |n| = 1 +
∞∑

i=1

�1 + logi
2 n� +

< log2 n

+ 2 log2 log2 n,

where the sum is evaluated as far as the i-fold iterated log-
arithm is non-negative, and the rightmost inequality assumes

n � 2. Similarly, for x ∈ B∗, K (x)
+
< |x| +

< |x| + 2 log2 |x|.
Whereas the Gibbs-Shannon entropy measures the mean

information content per independent sample of a probability
distribution [18], the description complexity measures the in-
formation content of an individual string without reference
to any distribution. Naturally, it satisfies analogous relations
[62]. We make frequent use of the following:

K (x | y)
+
< K (x)

+
< K (x, y)

+= K (y, x)
+= K (y) + K (x | y, K (y))

+
< K (y) + K (x | y).

The algorithmic mutual information between x and y is
defined by

I (x : y) := K (x) + K (y) − K (x, y)
+= K (x) − K (x | y, K (y)).

(14)
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The conditional mutual information I (x : y | z) is defined by
conditioning on z every K term in (14). It can be shown to
satisfy a data-processing identity [31]:

I (x : (y, z)) += I (x : z) + I (x : y | z, K (z)). (15)

Finally, for any computable probability measure μ, and
δ > 0,

δ · 2−K (x|μ) < μ(x)
×
< 2−K (x|μ),

where the first inequality fails on a set of μ probability less
than δ,3 while the second holds for all x ∈ B∗ ([49], Sec. 4.3).
Hence, with μ probability greater than 1 − δ,

K (x | μ)
+
< log2

1

μ(x)
< K (x | μ) + log2

1

δ
. (16)

In particular, setting μ to a uniform distribution on any finite

set A ⊂ B∗ reveals that K (x | A)
+
< log2 |A|, with K (x | A)

+=
log2 |A| for all but a constant fraction of x ∈ A. For “simple” μ

satisfying K (μ) ≈ 0, we have K (x | μ) ≈ K (x); hence, (16)
lets us interpret K (x) as a universal variant of the Shannon
codelength that does not depend on a choice of μ.

Note that we stated all these relations with respect to an
arbitrary universal computer U . By applying them to the
universal computer Uz(y, p) := U ((z, y), p), we see that they
remain valid when every mention of K is conditioned on any
additional data z ∈ B∗.

Short programs that output x serve as compressed represen-
tations of x. Consider the universal compression algorithm:
for a fixed time budget, simulate all programs of length up
to about |x| + 2 log2 |x|, and then output the shortest program
that halted with output x. As the time budget increases to
infinity, the resulting program length decreases to K (x). Thus,
we may think of K (x) as the optimum lossless compression
achievable for x, in the limit of infinite runtime. In the spirit
of Occam’s razor, suppose we think of the shortest program as
“explaining” x [63]; then we see that explanations are falsified
in finite time, but never proven, as we can never rule out the
possibility that x′s shortest program is among those that have
yet to halt.

A function f : B∗ → B∗ (or between countable sets asso-
ciated with encodings) is computable if there exists a prefix
machine T , such that T (x) = f (x) for all x ∈ B∗. The descrip-
tion complexity K is not computable in this sense; however,
our universal compression algorithm is easily adapted to com-
pute a decreasing integer sequence that approaches K (x) from
above. Hence, we say that K is upper semicomputable.

To extend these concepts to real-valued functions, we say
f : B∗ → R is lower (upper) semicomputable if there exists
a computable function g : B∗ × Z+ → Q, such that g(x, ·) is
monotonically increasing (decreasing), and

lim
n→∞ g(x, n) = f (x).

The real-valued function f is computable if it is both lower
and upper semicomputable; or equivalently, if there exists

3This follows by summing over those x which violate the inequal-
ity, and applying Kraft’s inequality (13).

a computable function g such that, for any desired level of
precision n,

|g(x, n) − f (x)| < 2−n. (17)

IV. THEORETICAL ANALYSIS

A. Coarse-grained algorithmic entropy

As in Sec. III C, we model a physical system’s coarse-
grained trajectory by a Markov process on the state space X .
We also fix a canonical encoding by which to identify X with
a subset of B∗. It will be convenient to define a conditional
version of Gács’s [23] coarse-grained algorithmic entropy
(2). Therefore, let the algorithmic entropy of x ∈ X , given
side information z ∈ B∗, relative to the stationary measure
π : X → R+, be

Sπ (x | z) := K (x | z) + log2 π (x). (18)

Note that (18) is formally identical to the stochastic entropy
(9), if we replace the prior μ(x) with 2−K (x|z).

The equilibrium properties of Sπ are fairly straightforward.
Assuming Z := ∑

x∈X π (x) < ∞, the normalization π (x)/Z
is an equilibrium ensemble. Further assuming that π (x)/Z is
simply describable from z, substituting it into (16) yields

K (x | z)
+
< log2

Z

π (x)
< K (x | z) + log2

1

δ
, (19)

where the first inequality holds for every state x ∈ X , while
the second fails with equilibrium probability less than δ. De-
fine the π -randomness deficiency,4 or negentropy, by

Jπ (x | z) := log2 Z − Sπ (x | z) = log2
Z

π (x)
− K (x | z).

(20)
Then (19) becomes simply

0
+
< Jπ (x | z) < log2

1

δ
. (21)

Therefore, the algorithmic entropy Sπ has a maximum value
of about log2 Z , and at equilibrium it concentrates near this
maximum. Under any of the standard ergodic conditions that
make a Markov process converge to π , it follows that the al-
gorithmic entropy tends toward this maximum and then rarely
fluctuates away from it.

In the general nonequilibrium setting, the randomness con-
servation theorem of Levin [24] says that the entropy tends
not to decrease. For our purposes, a particular formulation is
helpful, which we present as Theorem B 2 in Appendix B.
There we consider the transition matrix P that transforms a
random earlier state X of the process to a later state Y . If P
is π -stochastic, with both π and P being computable, then

4This concept originates in the algorithmic randomness literature
[64–66]. In the language of statistical hypothesis testing, randomness
deficiency is the logarithm of an e-value or likelihood ratio between
a null hypothesis π (x)/Z and a “universal” alternative hypothesis
2−K (x|z) [67–69]. Thus, Jπ (x | z) quantifies how implausible it is that
x was sampled from the equilibrium distribution if z was known prior
to sampling.
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Theorem B 2 says that〈
2Sπ (X |P̃)−Sπ (Y |P̃)〉 ×

< 1. (22)

Moreover, for all δ > 0, with probability greater than 1 − δ,

Sπ (X | P̃) − Sπ (Y | P̃)
+
< log2

1

δ
. (23)

Two remarks are in order. First, unlike its stochastic analog
(11), the algorithmic fluctuation relation (22) need not hold
with equality. For example, suppose P(y, x) := 1/|X | for all
x, y in some large finite set X . If the earlier state has K (X |
P̃)

+= 0 with probability one, then〈
2S�(X |P̃)−S�(Y |P̃)

〉 ×= 〈2−K (Y |P̃)〉 = 1

|X |
∑
y∈X

2−K (y|P̃)

<
1

|X | � 1.

Second, (23) bounds the increase in entropy by a constant
plus log2(1/δ). The constant term comes from basic properties
of K and can be made very small by an appropriate choice of
reference computer U ([49], Sec. 3.9). The log2(1/δ) term is
also quite small: supposing we tolerate δ = 2−1000, it amounts
to a kilobit, which is negligible in terms of physical units (re-
call (3)). Therefore, at macroscopic scales, we can effectively
say that entropy never decreases.

The conditional parameter, consisting of a program for P̃,
remains somewhat of a nuisance. We want a fixed entropy
function with which to compare states encountered through-
out our system’s evolution. Conditioning on P̃ would be fine
if it were solely determined by the laws of physics; but un-
fortunately, it also depends on the time elapsed between the
two snapshots X,Y of our system. In Sec. IV E we derive the
appropriate correction for this dependence.

In the meantime, we deal with the more urgent matter of
choosing a suitable coarse graining and equipping it with a
string encoding. We consider two types of coarse graining:
macroscopic and mesoscopic. Gács [23] focuses primarily
on the macroscopic type, letting the elements of X be the
Boltzmann macrostates. In other words, given a physical
system, we imagine measuring a few specially designated
macrovariables, such as the temperature, pressure, and chemi-
cal composition of each of its parts, to a reasonable number
of significant figures. The phase space is then partitioned
into cells corresponding to every possible joint measurement
outcome.

Since each cell x ∈ X is determined by the values of its
macrovariables, any standard numerical encoding (e.g., binary
scientific notation) would work. K (x | P̃) then is quite small:
even writing, say, a hundred macrovariables, each to a dozen
significant figures, requires only a few kilobits. Therefore, the
algorithmic entropy (18) of a macrostate x simplifies to

S�(x | P̃) ≈ log2 π (x),

which is just its Boltzmann entropy (in bits).
For physical systems whose Boltzmann macrostates mix

sufficiently rapidly, we expect this coarse graining to be ap-
proximately Markovian. However, there are systems whose
Boltzmann macrostates are not ergodic. For example, com-

puter systems are heavily dependent on the stability of their
memory states. As a result, every memory state must be
treated separately, even if they occur at the same ambient tem-
perature, pressure, and so on. Here we might use the coarse
graining X := Bm, corresponding to all possible settings of
an m-bit memory.

In more general settings, we can obtain a mesoscopic
coarse graining by rounding or truncating the values of the
canonical microvariables ([35], Sec. 12 and [17], Sec. 2.7).
For an N-particle Hamiltonian system, each cell x ∈ X is
determined by the individual particles’ three-dimensional po-
sitions and momenta to a high but finite level of precision. In
phase space, these cells are tiny 6N-dimensional hypercubes.
The string encoding consists of 6N numerical positions and
momenta, written in any standard format. The cells have equal
Liouville measure, making π constant; by normalizing, we
can set π := �, so that log2 �(x) = 0 and P̃(x, y) = P(y, x).
Therefore, the algorithmic entropy (18) of a mesostate x sim-
plifies to

S�(x | P̃) = K (x | P̃)
+= K (x | P),

which is just the description complexity of its canonical mi-
crovariables.

We apply the macroscopic coarse graining to reservoir
systems whose macrostates mix rapidly, and the meso-
scopic coarse graining to all other systems. We can think
of the mesostates as a refinement of the macrostates: each
Boltzmann macrostate corresponds to a large set B ⊂ X of
mesostates, with Boltzmann entropy log2 |B|. Since K (B) is
small, (16) implies agreement between the algorithmic and
Boltzmann entropies: for the vast majority of mesostates
x ∈ B,

K (x | P) ≈ K (x | P, B)
+= log2 |B|. (24)

One advantage of the mesoscopic description is that the
macrovariables need not be chosen in advance. (24) holds not
only for the classical Boltzmann macrostates, but for every
simply describable finite set B ⊂ X containing x. For exam-
ple, the entropy of a bookshelf may be estimated by taking B
to be the set of configurations compatible with how the books
are sorted. For all x ∈ B ⊂ X ,

K (x | P)
+
< K (B | P) + log2 |B|, (25)

since x is uniquely identified by a description of B, along with
a numerical index of size log2 |B|. In particular, the Boltzmann
entropy is only an upper bound on K (x | P). The latter may be
smaller if the state x has additional structure not captured by
the Boltzmann macrovariables.

Generalizing the fixed-size index to a variable-size Shan-
non code, we also have that for all computable probability
measures μ : X → R+,

K (x | P)
+
< K (μ | P) + log2

1

μ(x)
. (26)

In algorithmic statistics ([49], Sec. 5.5 and [70–72]), the
right-hand sides of (25) and (26) are minimized in order to
infer which set B or ensemble μ best describes x. There even
exist so-called nonstochastic strings x, for which no simply
describable B or μ makes the inequalities tight [70]. Thus,
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the algorithmic entropy takes into account much more general
descriptions of states, than do the traditional Boltzmann and
Gibbs-Shannon entropies.

B. Comparison against Gibbs-Shannon entropy

One reason why entropy is often regarded as mysterious is
that its definitions present conceptual challenges. The Gibbs-
Shannon entropy is a function of ensembles and therefore
makes no comment on individual physical states. The algo-
rithmic entropy, on the other hand, is defined for all individual
states, but fails to be computable. While every program that
outputs x yields an upper bound on K (x), there is nox for
which we can compute a large lower bound. For if there were,
then a small algorithm could search for such x and output the
first one it finds, in contradiction to K (x) being large. This
is Chaitin’s incompleteness theorem ([73], Sec. 4 and [31],
Theorem 1.5.2).

While it appears to be a serious shortcoming, the in-
computability of K was shown to benefit its application to
universal prediction ([74], Sec. 3). To see how incomputability
likewise benefits thermodynamics, suppose we instead define
the entropy as some state function K ′, for which large lower
bounds are computable. Then once again, a short program p
can search for and output an x for which K ′(x) is large. Identi-
fying p with its smallest physical implementation, we expect
K ′ to satisfy the “physical continuity” property K ′(p, y) ≈
K ′(y) for all y. Any program that computes x can also be used
to erase a preexisting copy of x.5 As a result, K ′ would de-
crease substantially, from K ′(p, x) ≈ K ′(x) to K ′(p, 0) ≈ 0.
Hence, such a K ′ cannot have a second law.

Having seen why we need K , we are left with the prac-
tical matter of estimating it. While lower bounds cannot be
computed for any individual x, (16) provides a lower bound
that holds for most samples from any given distribution μ.
Moreover, by adding 〈log2 π (X )〉 to both sides of (1) and
presenting it alongside the definition (10), we obtain

Hπ (μ) := 〈Ĥπ (X, μ)〉X∼μ
+= 〈Sπ (X | μ)〉X∼μ.

Ignoring the middle expression for a moment, this says the
Gibbs-Shannon entropy is an average over μ, of the algorith-
mic entropy conditioned on prior knowledge of μ. The two
stipulations of averaging and prior knowledge cast doubt on
whether Hπ captures anything objective about physical states.
Fortunately, in a wide range of practical settings, there is a
natural choice of ensemble μ : X → R+, corresponding to
the individual underlying state x ∈ X , such that a more direct
equivalence holds:

Hπ (μ) ≈ Ĥπ (x, μ) ≈ Sπ (x). (27)

The idea is as follows. We consider μ to be a useful sum-
mary of x when three conditions hold:

5Following Bennett [48], the sequence of computations is
(p, x, 0, 0) → (p, x, x, g) → (p, 0, x, g) → (p, 0, 0, 0). First, the
program is run to produce a second copy of x along with a
computation trace g; then the copy of x is used to reversibly erase the
original; finally, the program is run backward to clean up its outputs.

(1) μ is simply describable, i.e., computable with
K (μ) ≈ 0.

(2) μ has a notion of typicality: most of its samples share
some characteristics of interest.

(3) x is among the typical samples with those characteris-
tics.

Condition 1 already implies

Sπ (x | μ) ≈ Sπ (x), (28)

removing the need to condition on prior knowledge of μ. It
remains only to get rid of the averaging.

Adding log2 π (x) on all sides of (16) implies that

Pr
X∼μ

(Sπ (X | μ) ≈ Ĥπ (X, μ)) ≈ 1, (29)

where we’ve hidden the tolerances behind approximation (≈)
signs for brevity. We take condition 2 (typicality) to mean that
the stochastic entropy concentrates near its expectation:

Pr
X∼μ

(Ĥπ (X, μ) ≈ Hπ (μ)) ≈ 1. (30)

In many practical settings, (30) is derived as a consequence of
the law of large numbers ([18], Sec. 3).

Condition 3 is that x is typical for μ, which we take to mean
that x belongs to the intersection of the high-probability sets
given by (29) and (30), that is,

Hπ (μ) ≈ Ĥπ (x, μ) ≈ Sπ (x | μ). (31)

When all three conditions hold, (28) and (31) together imply
(27); that is, the Gibbs-Shannon, stochastic, and algorithmic
entropies all approximately coincide!

As an example, let μ be the canonical ensemble for a
mechanically isolated container of an ideal gas at thermody-
namic equilibrium. This ensemble’s simple description meets
condition 1, while the gas particles’ independence and large
number ensure condition 2. The overwhelming majority of
states encountered at equilibrium are typical in the sense of
condition 3. For those states, we conclude that the equivalence
(27) holds. The same argument applies to nonequilibrium en-
sembles, provided that they are simply describable and satisfy
the concentration property (30).

On the other hand, we now consider three examples that
break each respective condition. We use them to argue that,
when the equivalence (27) does not hold, Sπ (x) is a more
physically correct measure of entropy than Hπ (μ). For sim-
plicity, let π := �, so that Sπ = K .

The first violation, where K (μ) � 0, is exemplified by let-
ting μ be the point mass on a high-complexity state x. In this

case, K (x)
+= I (x : μ)

+= K (μ) � H (μ) = 0. Intuitively, the
Gibbs-Shannon approach takes μ as an exogenous parameter
to specify that we know the value of x and can therefore clear
it reversibly. In reality, in order to use any sort of knowledge,
we must have it physically encoded in a memory device
such as our brain. A strength of the algorithmic approach
is that it naturally models knowledge as an endogenous part
of the physical system. In Sec. V B we see how to model a
Maxwell’s demon that acquires, and then uses, information
about x.

The second violation, where μ lacks a typical set, is exem-
plified by a robot that flips a hidden coin to decide whether or
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not to drain its battery. The probabilistic state μ of the battery
and surrounding heat reservoir becomes an equal mixture of
the two ensembles corresponding to a full or empty battery.
Hence, H (μ) reaches an intermediate level: a free energy
calculation in terms of Gibbs-Shannon entropy would suggest
that the robot can do about half a charge worth of work. In
reality, the robot will do either zero or a full charge of work.
H (μ) merely predicts the average work output among states
sampled from μ. In contrast, we see in Sec. IV D that K (x)
predicts the work output from a specific state x, whether it be
zero or a full charge.

The final violation occurs when x is atypical for μ, in
such a way that K (x) � Ĥ (x, μ). Whether this is due to
bad inductive priors or because x is nonstochastic [70], the
Shannon code for μ is then suboptimal for x. As a result, a
Gibbs-Shannon free energy calculation would underestimate
the work that a suitable compression algorithm can extract
from x. If we take this calculation too seriously, the com-
pression algorithm would appear to violate the second law of
thermodynamics.

It is interesting to observe that the so-called univer-
sal measure m(x) := 2−K (x) has a “Shannon codelength”
of precisely Ĥ (x, m) = K (x). This makes it useful as an
inductive prior [56,60,61,63,75,76]. However, regardless of
whether we normalize m, its Gibbs-Shannon entropy is phys-
ically meaningless because it lacks the concentration property
(30).6 For additional comparisons between the probabilistic
[18] and algorithmic [49] flavors of information theory, see
[62,63,70,77]. We adopt the view of Kolmogorov, who con-
sidered algorithmic descriptions to be conceptually prior to
(and more general than) probabilistic ones. In his words:
“Information theory must precede probability theory, and not
be based on it. By the very essence of this discipline, the
foundations of information theory have a finite combinatorial
character” [78].

C. Interactions with general reservoirs

Now we specialize our framework to the commonly stud-
ied setting in thermodynamics, in which a base system
interacts with an environment composed of one or more
reservoir systems. Suppose the ith reservoir’s macrostate is
determined by its energyEi ∈ R, and possibly some additional
macrovariables (e.g., volume and particle count) that we col-
lectively denote by Vi ∈ Rdi (di ∈ Z+). Let πi(Ei, Vi ) denote
the Liouville measure of this macrostate, so that

Bi(Ei, Vi ) := kB ln πi(Ei, Vi )

is its Boltzmann entropy in physical units.7 Our coarse-
graining formalism restricts the macrovariables to a discrete

6Indeed, if X is simply describable (as a subset of B∗) and large,
then H (m) is also large. The program describing X enumerates its
elements, of which the first x ∈ X satisfies Ĥ (x, m) = log2

1
m(x) =

K (x)
+= K (X )

+= 0. Thus, x has substantial “probability” m(x), de-
spite having Ĥ (x, m) � H (m).

7For an infinite reservoir, the energy, volume, and Boltzmann en-
tropy would be infinite. Fortunately, we care only about relative
changes in these quantities, so we can normalize them to be finite.

set of values; nonetheless, if Bi is approximately linear over
typical increments in (Ei, Vi ), then we can model it as a
differentiable function.

Define the temperature Ti by

1

Ti
:=

(
∂Bi

∂Ei

)
Vi

. (32)

At any state (Ei, Vi ) for which Ti �= 0, the implicit function
theorem lets us locally write the energy as a differentiable
function Ei(Bi, Vi ), with

dEi = Ti dBi +
(

∂Ei

∂Vi

)
Bi

· dVi. (33)

Thus, the flow of energy into the reservoir is a sum of two
contributions. The heat flow d̄Qi is the energy transferred via
microscopic degrees of freedom:

d̄Qi := Ti dBi = kBTi ln 2 d log2 πi. (34)

In our inclusive approach, there is no external driving.
Instead, the work d̄Wi is done by the reservoir; it is the energy
transferred via changes in the macrovariables Vi:

d̄Wi = −
(

∂Ei

∂Vi

)
Bi

· dVi. (35)

A reservoir whose only macrovariable is energy (i.e., with
di = 0) cannot exchange work and is known as a heat reser-
voir. Conversely, a reservoir whose πi is a constant function
cannot exchange heat, and is known as a work reservoir.
Substituting (34) and (35) into (33) yields the first law of
thermodynamics

dEi = d̄Qi − d̄Wi,

or after integrating over a given time interval,

�Ei = Qi − Wi. (36)

From now on, we use the bold lowercase variable

x := (x, E1, V1, . . . , Em, Vm)

to denote the joint coarse-grained state of our base and reser-
voir systems. It consists of the base system’s mesostate x ∈ X ,
which we assume to be of unit Liouville measure, along with
the macrostates (Ei, Vi ) of m reservoirs. Thus, the mesostates
x, the energies Ei, the macrovariables Vi, and the temperatures
Ti are all implicitly functions of the joint state x. The mixing
within macrostates should be much faster than the transitions
between them; this is the main physical assumption which
enables us to treat x as a Markovian state.

Its joint Liouville measure

π (x) :=
m∏

i=1

πi(Ei, Vi ) (37)

is stationary with respect to the dynamics P. Hence, the joint
algorithmic entropy (18) expands to

Sπ (x | P̃) := K (x | P̃) +
m∑

i=1

log2 πi(Ei, Vi ). (38)
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Assuming the macrovariables are simply describable, we have

K (x | P̃) ≈ K (x | P̃) = S�(x | P̃),

log2 πi(Ei, Vi ) ≈ Sπi (Ei, Vi | P̃).

In other words, the joint algorithmic entropy (38) is ap-
proximately the sum of the individual systems’ algorithmic
entropies. Motivated by these approximations, during a joint
state transition x → y, we define the base system’s entropy
gain by

�K (x → y) := K (y | P̃) − K (x | P̃).

It can be decomposed into a sum

�K (x → y) = �eK (x → y) + �iK (x → y) (39)

of the (reversible) entropy flow from the environment

�eK (x → y) := log2 π (x) − log2 π (y) (40)

and the (irreversible) entropy production

�iK (x → y) := Sπ (y | P̃) − Sπ (x | P̃). (41)

This completes our core definitions. In practice, the
stochastic thermodynamics literature seldom mentions the
reservoir macrovariables. Instead, it labels the different means
by which the base system can transition from x to y, by
mechanisms i [7], such that the triple (x, y, i) uniquely de-
termines the resulting joint state y, and (x, y, i) determines
the transition probability

P(i)(y, x) := P(y, x).

Exactly one mechanism occurs per time step, and each has a
different outcome, so that

∀x,
∑
i,y

P(i)(y, x) =
∑

y

P(y, x) = 1.

For example, in settings where at most one reservoir
changes at a time, i would be the index of this reservoir. If the
macrovariables of reservoir i are conserved quantities, their
changes are equal and opposite to those of the base system
during any transition x → y. Now writing

P̃(i)(x, y) := P̃(x, y) = P(y, x)π (x)

π (y)
,

the entropy flow (40) can be expressed in terms of just the
base system:

�eK (x → y) = log2
π (x)

π (y)
= log2

P̃(x, y)

P(y, x)
= log2

P̃(i)(x, y)

P(i)(y, x)
.

(42)

By (39) and (42), the entropy production is given by

�iK (x → y) = K (y | P̃) − K (x | P̃) + log2
P(i)(y, x)

P̃(i)(x, y)

≈ K (y | P̃) − K (x | P̃) + log2
P(i)(y, x)

P̃(i)(x, y)
.

(43)

We remark that the detailed balance condition P = P̃,
which expands to (6), is equivalent to having P(i) = P̃(i) for all

i, which the literature refers to as local detailed balance [5–7].
In this article, we do not assume (local) detailed balance. We
also opt for the more explicit notation P(y, x), in terms of
joint states rather than mechanisms.

Having defined our key thermodynamic quantities, we now
derive relationships between them, by drawing upon the math-
ematical results in Appendix B. Theorem B 2 formulates the
second law of thermodynamics as an integral fluctuation in-
equality. It says that, regardless of the initial state distribution,
the entropy production (41) has a strong statistical tendency
to be non-negative:

〈2−�iK〉 ×
< 1. (44)

Substituting (40) and (41) into (B6) and (B7) yields a pair
of detailed fluctuation inequalities. They bound the entropy
flow and production for every individual state transition:

�eK (x → y)
+
< log2

1

P(y, x)
− K (x | y, P̃), (45)

−�iK (x → y)
+
< log2

1

P(y, x)
− K (y | x∗

P̃, P̃). (46)

While we obtain x∗
P̃

:= (x, K (x | P̃)) in Appendix B for tech-
nical reasons, in practice we can think of x∗

P̃
as simply x, since

their information content is usually about equivalent ([31],
Sec. 3.3.2).

To interpret these inequalities, note that the logical irre-
versibility K (x | y, P̃) is the amount of information lost about
a previous state x, upon transitioning to y. To compensate
for the lost information, (45) says that either y must be a
low-probability outcome, or else entropy must flow into the
environment. Meanwhile, (46) says that entropy production
can only be negative for state transitions that are less likely
than their “algorithmic probability” 2−K (y|x∗

P̃
,P̃).

The inequalities (44) to (46) are information-theoretic in
nature, holding for very general environments with arbitrary
π . Next, we consider constant temperature environments,
for which these inequalities resemble well-known thermody-
namic fluctuation theorems.

D. Constant temperature reservoirs

Suppose each reservoir’s temperature Ti is constant. Hold-
ing Vi fixed while integrating (33) with respect to Bi yields

Ei = TiBi + Ei,work, (47)

with a “constant of integration” Ei,work (Vi ) that depends only
on the macrovariables Vi. The heat and work become exact
differentials, since substituting (47) into (35) yields d̄Wi =
−dEi,work, and then integrating yields

Qi = Ti�Bi = kBTi ln 2 � log2 πi = −kBTi ln 2 �eK, (48)

Wi = −�Ei,work. (49)

As a result, we no longer need continuous variables to dif-
ferentiate: provided that Ei changes linearly with Bi, we can
define the heat and work using Eqs. (47) to (49).

Now, we solve (47) for

ln πi(Ei, Vi ) = Bi(Ei, Vi )

kB
= Ei − Ei,work (Vi)

kBTi
.
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Substituting into (37), the joint Liouville measure is

π (x) =
m∏

i=1

πi(Ei, Vi ) = exp

(
m∑

i=1

Ei − Ei,work (Vi )

kBTi

)
. (50)

Up to a normalization factor, (50) corresponds to a number
of well-known formulas for the Gibbs measure. For exam-
ple, consider the case where each reservoir i has not only
a constant temperature Ti, but also a constant pressure pi

and chemical potential μi for a common species of particle.
Then Vi consists of the reservoir’s volume Vi and particle
number Ni, and the Gibbs measure is given by (50) with
Ei,work (Vi, Ni ) := −piVi + μiNi [79]. The mechanical term
−piVi(x) and the chemical term μiNi(x) correspond to the
reservoir’s ability to do each type of work.

In the case m = 1, where there is only one reservoir, the
joint state x is effectively determined as a function of only
the base system state x. Formally, let E0(x), V0(x), and N0(x),
respectively, denote the energy, volume, and particle number
of the base system at state x, and suppose that the totals
E0(x) + E1, V0(x) + V1, and N0(x) + N1 are conserved. After
normalizing the reservoir macrovariables E1,V1, N1 so that
each of the totals is zero,

x = (x, E1, V1, N1) = (x, −E0(x), −V0(x), −N0(x)),

Consequently, (50) simplifies to

π (x) = π (x) = exp

(−E0(x) − Ework (x)

kBT

)
, (51)

with Ework(x) := pV0(x) − μN0(x) in the case of constant
pressure p and chemical potential μ.

More generally, we consider any kind of single-reservoir
environment at constant temperature T , whose macrovariables
are determined as functions of x. (51) still holds, with a possi-
bly different potential function Ework(x). As a result, the joint
algorithmic entropy is given by

Sπ (x | P̃)
+= Sπ (x | P̃) = K (x | P̃) − E0(x) + Ework (x)

kBT ln 2
.

(52)
It is customary to multiply aggregate entropies by −kBT ln 2,
in order to express them in units of energy. The result is the
total algorithmic free energy

G(x) := E (x) + Ework (x) − K (x | P̃) kBT ln 2. (53)

G serves as a convenient accounting mechanism. Despite be-
ing a function of only the base system’s state x, it tracks the
total entropy production:

�G
+= −kBT ln 2 �iK. (54)

As such, G is nonincreasing up to fluctuations. To be precise,
(44) and (54) imply〈

exp

(
�G

kBT

)〉
= 〈

2�G/kBT ln 2〉 ×
< 1. (55)

It is also useful to consider thermodynamic potentials
which track only some changes in entropy; we interpret them
as resources that convert to and from the excluded form(s) of
entropy. For example, define the Helmholtz algorithmic free

energy by

F (x) := E (x) − K (x | P̃) kBT ln 2. (56)

During any state transition, (49), (53), and (56) imply

�G = �F + �Ework = �F − W. (57)

Substituting (57) into the integral fluctuation inequality (55)
yields 〈

exp

(
�F − W

kBT

)〉
×
< 1. (58)

Markov’s inequality [or (23)] then implies, with probability
greater than 1 − δ,

�F − W
+
< kBT ln

1

δ
.

Since the right-hand side is negligible at macroscopic scales,
we see that F measures the base system’s capacity for work:
free energy must be spent in order for the base system to do
work; and conversely, work must be done on the base system
in order to replenish free energy.

To get a closer view of the fluctuations in (58), substitute
(54) and (57) into the detailed fluctuation inequality (46):

�F − W

kBT ln 2
+
< log2

1

P(y, x)
− K (y | x∗

P̃, P̃).

Aside from the
×
< sign, (58) is symbolically identical to

Jarzynski’s [26] equality. However, there are important dif-
ferences between the two results: our algorithmic free energy
F is a trajectory-level quantity, defined as a function of in-
dividual states rather than ensembles. Moreover, we take an
inclusive view of the work W , as an interaction with the
reservoir rather than as external driving.

Finally, to find an explicit connection between information
and heat transfer, we change our choice of thermodynamic
potential, from F , to the internal entropy K . Using (39) and
(48),

�iK = �K − �eK = �K + Q

kBT ln 2
.

Substituting into the integral fluctuation inequality (44) yields〈
2

−
(
�K+ Q

kBT ln 2

)〉
×
< 1. (59)

By Markov’s inequality [or (23)] again, with probability
greater than 1 − δ,

�K + Q

kBT ln 2
+
> − log2

1

δ
. (60)

In order for a digital memory to clear its data, Landauer
[27] argued that it must emit at least kBT ln 2 of heat per erased
bit. Since clearing data reduces its description complexity K ,
we can think of (59) and (60) as mathematically rigorous
formulations of Landauer’s principle. The impact of heat flow
on the energy efficiency of computer hardware depends on
the extent to which the flow is reversible; we examine this in
Sec. V C.

The fluctuations in (59) are described by the inequality
(45), which generalizes the earlier bounds of Zurek [80] and
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Kolchinsky [25]. In the case of near-deterministic transitions

with negligible complexity [i.e., log2 P(y, x)
+= K (P̃)

+= 0],
(45) reduces to Zurek’s inequality

−�eK (x → y)
+
> K (x | y). (61)

On the other hand, substituting (48) into (45) yields
Kolchinsky’s inequality

Q(x → y)

kBT ln 2
+
> K (x | y, P̃) − log2

1

P(y, x)
. (62)

It can be seen as a detailed version of Landauer’s principle,
giving the minimum heat transfer that accompanies a state
transition x → y, in terms of its probability P(y, x) and logical
irreversibility K (x | y, P̃).

E. Refining the second law

Now, we return to the fully general setting from Sec. IV A,
to deal with the algorithmic entropy’s dependence on the con-
ditional parameters P̃. In most applications, the information
content of P̃ consists of a constant part and a variable part.
For example, suppose we want to study a particular time-
homogeneous π -stochastic Markov chain, at many different
times. Then (8) determines the transition matrix P�t in terms
of a constant part P1 and a variable part �t ; to compute its
dual P̃�t , we add π to the constant part.

We regard (P1, π ) as built into the fundamental laws of
physics and assume that they have short encodings on the
“natural computers” of the Universe. This assumption can
be viewed as a complexity-theoretic version of the physi-
cal Church-Turing thesis [21,22], essentially saying that the
Universe can implement its own laws on a small computer.
Formally, we model this by choosing our reference universal
computer in such a way that K (P1, π ) ≈ 0. Only the variable
part (in this case, �t) requires an explicit correction.

First, we prove the correction for general P̃; later, we
consider the case where only �t is variable. To keep this
subsection brief, we apply it only to the tail bound (23),
though the same correction can also be applied to the integral
bound (22) and the detailed bound (46). A reader who is less
interested in mathematical details may skip to the main result,
Corollary 2.

Theorem 2. Let π : X → R+ \ {0} be a measure and
X,Y be X -valued random variables, such that the matrix
P(y, x) := Pr(Y = y | X = x) is π -stochastic with a com-
putable dual P̃. Let δ > 0. Then, with probability greater than
1 − δ,

Sπ (X ) − Sπ (Y )
+
< I (X : P̃) − I (Y : P̃) + log2

1

δ

+
< K (P̃) + log2

1

δ
. (63)

Proof. For all x ∈ X , the defining equations (14) and (18)
imply

Sπ (x | P̃, K (P̃)) = log2 π (x) + K (x | P̃, K (P̃))

+= log2 π (x) + K (x) − I (x : P̃)

= Sπ (x) − I (x : P̃). (64)

Now, fix δ > 0. We condition Theorem B 2 on the addi-
tional data K (P̃) to find that, with probability greater than
1 − δ,

Sπ (X | P̃, K (P̃)) − Sπ (Y | P̃, K (P̃))
+
< log2

1

δ
.

In this event, (64) yields

Sπ (X ) − Sπ (Y )
+= Sπ (Xs | P̃, K (P̃)) + I (X : P̃)

− Sπ (Y | P̃, K (P̃)) − I (Y : P̃)

+
< I (X : P̃) − I (Y : P̃) + log2

1

δ
.

Now (63) follows from the general bounds 0
+
< I (x : z)

+
<

K (z). �
Next, we show that Theorem 2 is tight: in the deterministic

and reversible case, its conclusion holds with equality. To be
precise, consider the case where P is a permutation matrix;
equivalently, the dynamics are described by a bijective trans-
formation f : X → X .

Corollary 1. For all computable bijections f : X → X ,
and x ∈ X ,

K ( f (x)) − K (x)
+= I ( f (x) : f ) − I (x : f ).

In particular, if I (x : f )
+= 0, then

0
+
< K ( f (x)) − K (x)

+
< K ( f ). (65)

Proof. Define a permutation matrix P as follows: for x, y ∈
X , let P(y, x) := 1 if y = f (x), and P(y, x) := 0 otherwise.
Since P is doubly stochastic, P̃ is its transpose, computable
by a constant-length program together with f . In order to
apply Theorem 2, let π := � so that Sπ = K , let the “random”
variable X be a constant x ∈ X with probability one, and let
Y := f (x). Clearly, if the probability of a nonrandom event
is positive, then it occurs with certainty. Therefore, by setting
δ := 1/2 in Theorem 2,

K (x) − K ( f (x))
+
< I (x : f ) − I ( f (x) : f )

+
< K ( f ).

Repeating the same argument for the inverse function yields

K ( f (x)) − K (x)
+
< I ( f (x) : f ) − I (x : f )

+
< K ( f ).

Combining these inequalities yields the desired
conclusions. �

The leftmost inequality of (65) first appeared in Janzing
et al. [28]. There the implication

I (x : f )
+= 0 ⇒ K (x)

+
< K ( f (x))

was interpreted as saying that the second law of thermody-
namics (increase in K) is due to algorithmic independence
of the initial condition x from the dynamical law f . The
problem with their interpretation lies in the rightmost inequal-
ity of (65): f would have to be extraordinarily complex to
allow entropy production at a physically meaningful scale. For
any deterministic dynamical law that we can feasibly write,
Corollary 1 really says that the entropy cannot change by
a physically meaningful amount [recall the unit conversions
(3)]. Thus, randomness (which in classical physics comes
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from coarse graining) is necessary for substantial entropy
production to occur.

That being said, we can offer a useful interpretation in
line with that of Janzing et al. [28]. A doubly stochastic law
P can be implemented by choosing a bijection f at random
[81], e.g., by repeated tosses of a fair coin. The combination
of a low-complexity P, along with the results of sufficiently
many coin tosses, then serves as a deterministic law f of very
high complexity. Since the coins contribute the bulk of f ′s
information content, algorithmic independence from f really
means independence from the coin tosses. If the coins are
indeed independent of x, Corollary 1 implies that the entropy
cannot decrease, and may increase by up to as many bits as
there are coins.

In the setting of a time-homogeneous process, we want
to compare the entropies Sπ (Xs) and Sπ (Xt ), at times s < t .
The transition matrix Pt−s governing the state transition is
generated by either P1 (if time is discrete), or a rate matrix
(if time is continuous). A programmatic description of our
process’s physics should compute the generator and, from it,
the transition matrix Pt−s and its dual P̃t−s, over any desired
time interval [s, t].

Formally, we postulate the existence of a short computer
program p, such that for all �t and x, y ∈ X , our ref-
erence computer U outputs U (p, �t, y, x) = P̃�t (y, x). In
other words, the pair (p, �t ) is a program for P̃�t . In the
continuous-time case, since the uncountable set R+ has no
encoding, we consider only rational durations �t ∈ Q+. By
correcting for the description complexity of �t , we arrive at
our most comprehensive, duration-dependent second law of
thermodynamics.

Corollary 2 (Algorithmic second law of thermodynamics).
Let π : X → R+ \ {0} be a measure, (Xt )t∈T be a
stochastic process in either continuous (T = R+) or

discrete (T = Z+) time, and fix p ∈ B∗ so that |p| += 0.
Consider a pair s, t ∈ T with t − s ∈ Q+, such that the
matrix P(y, x) := Pr(Xt = y | Xs = x) is π -stochastic, and its
dual satisfies P̃(y, x) = U (p, t − s, y, x). Then, for δ > 0,
with probability greater than 1 − δ,

Sπ (Xs) − Sπ (Xt )
+
< I (Xs : t − s) − I (Xt : t − s) + log2

1

δ

+
< K (t − s) + log2

1

δ
. (66)

Proof. Using the pair (p, t − s) to encode P̃, the conclu-
sion of Theorem 2 becomes

Sπ (Xs) − Sπ (Xt )
+
< I (Xs : (p, t − s)) − I (Xt : (p, t − s))

+ log2
1

δ

+
< K (p, t − s) + log2

1

δ
.

Since |p| += 0, (66) follows. �
We remark that both of the fluctuation terms, K (t − s) and

log2(1/δ), are necessary. The former allows periodic visits to
low-entropy states, such as in a deterministic process with a
very long cycle; whereas the latter allows chance encounters
with low-entropy states, such as in a random mixing pro-
cess. The Poincaré recurrence theorem famously predicts that

Hamiltonian systems eventually return to states of low entropy
[29]; Corollary 2 is consistent with this finding.8

For realistic systems that do not change too quickly, the
condition t − s ∈ Q+ is not a serious limitation: a small
change in t suffices not only to make t − s rational, but also
to make its complexity K (t − s) negligible. For concreteness,
suppose we restrict our comparisons of entropy to durations
that are multiples of Planck’s time. In Planck units, since
the age of the Universe is less than 2203, all durations up
to the present can be represented by integers in the range
1 < �t < 2203, for which

K (�t )
+
< log2 �t + 2 log2 log2 �t < 203 + 2×8 bits

= 219 bits < 2.1×10−21 J K−1.

Therefore, up to negligible fudge terms and exceedingly rare
fluctuations, Corollary 2 says that the unconditional entropy
Sπ is nondecreasing over time.

V. APPLICATIONS

A. Inclusive dynamics and open systems

Our setup thus far is quite general, but cumbersome for
the purpose of constructing examples. We focused on in-
clusive closed system models, in which all influences are
explicitly accounted for. As a result, the dynamics are fully
determined by the laws of physics, which we assume to
be measure-preserving (hence, π -stochastic on a Markovian
coarse graining), simply describable, and time-homogeneous.
Corollary 2 applies directly to such settings.

On the other hand, sometimes we want to omit the details
of some influences, leaving an open system model. For ex-
ample, in the setting of Secs. IV C and IV D, if we model
only the base system without the environment’s reservoirs,
this is an open system. Its mesostates have constant measure,
and yet the dynamics have a nonconstant stationary measure
π . Since open systems can trade with their environment,
measure-preservation and conservation laws do not directly
apply.

Without modeling the environment explicitly, can we cor-
rect for it to say anything useful? To derive formulas for the
entropy flow and production, we must start from the corre-
sponding inclusive model and then eliminate the environment
measure π . We did this in (42) and (43); these formulas still
depend on π through the dual matrix, but that too is eliminated

8That said, entropy fluctuations at the scale of Poincaré recurrence
are incredibly rare. To illustrate, consider 101020

consecutive time
steps of any simply describable duration, be they seconds or years. If
we set δ := (101020

)−3 in Corollary 2, then by a union bound over all
pairs (s, t ) of these times, the probability of (66) failing for even one
pair is less than one in 101020

. Since 101020
< 23.33×1020

, (66) bounds
the largest entropy decrease by

K (t − s) + log2

1

δ
< 3.33×1020 + 2 log2(3.33×1020)

+ 9.99×1020 < 1.333×1021 bits < 0.013 J K−1.

Each increment of the topmost exponent in 101020
would only multi-

ply this bound tenfold.
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in the case of (local) detailed balance. We can then apply
results such as Theorem 2 and Corollary 2, by substituting
the correct formula (43) for entropy production.

Other open systems may experience algorithmically com-
plex or time-dependent dynamics. Again, we begin with the
inclusive model, and then try to eliminate the influence. Con-
sider a control system with state space C, that influences a base
system with state space X . Suppose the control state stays still,
i.e., the joint transition matrix P : (C×X )×(C×X ) → R+
satisfies

c �= d ⇒ P((d, y), (c, x)) = 0.

For any coarse-grained Liouville measure

π (c, x) := πC (c)πX (x) for c ∈ C, x ∈ X ,

it is easy to verify that P is π -stochastic iff each of the
submatrices P((c, ·), (c, ·)) are πX -stochastic.

In this manner, a single global dynamics P can emulate
a wide variety of local dynamics P((c, ·), (c, ·)) on our base
system. Since the submatrices are πX -stochastic, results such
as Theorem 2 and Corollary 2 apply to our base system.
However, the submatrix is not fully determined by the laws
of physics P; it also depends on the control input c. If K (c) is
sufficiently small, it is safe to ignore this dependence.

However, if K (c) is large, the control might represent
a complex piece of information, such as the mind of a
Maxwell’s demon. In the next subsection, we revisit the fa-
mous thought experiment using our algorithmic inequalities.
If we insist on modeling x as an open system, then the algo-
rithmic entropy must be conditioned on c.

A useful variant of a control is a reversible program counter
or clock C := Zm, with πC := �. Instead of staying still, it ticks
ahead in a predetermined manner:

c + 1 �≡ d (mod m) ⇒ P((d, y), (c, x)) = 0.

Although the global dynamics P is time-homogeneous, a
clock enables the base system to undergo a sequence of
different πX -stochastic transitions, given by the submatrices

P((c + 1, ·), (c, ·)). If m is not too large, then K (c)
+
< 2 log2 m

is quite small.
We can apply Theorem 2 to systems with time-dependent

dynamics. Consider a time interval [s, t], during which the
evolution is given by a short sequence of simply describable
time-dependent transition matrices. Then, setting (X,Y ) :=
(Xs, Xt ) in Theorem 2, we have K (P̃)

+= 0. Allowing for a
small but constant probability δ of failure, its conclusion

simplifies to SπX (Xs)
+
< SπX (Xt ). Recall from Sec. IV A that,

for nonreservoir systems, we coarse grain into equal-sized
mesostates. Therefore, in the absence of heat transfer, the
dynamics are doubly stochastic, the algorithmic entropy is
S� = K , and the theorem’s conclusion becomes

K (Xs)
+
< K (Xt ). (67)

It may also seem cumbersome to construct interesting
examples of transition matrices. Fortunately, by Révész’s
generalization of the Birkhoff–von Neumann theorem, tran-
sitioning by a doubly stochastic matrix is equivalent to
transitioning by a probabilistic mixture of deterministic bijec-

tions [81]. This means, instead of writing an explicit transition
matrix P, we can describe the dynamics as a random bijection
x �→ F (x), where the bijection F : X → X is sampled inde-
pendently at each time step, from some distribution with low
description complexity.9 If we only care to specify F on a
proper subset of X , then it can be a random injection whose
domain and range have complements of equal cardinality,
since these can be extended to bijections on all of X .

For example, on the two-element state space X := B =
{0, 1}, there are exactly two bijections: identity and negation.
Therefore, these are the only deterministic dynamics permit-
ted on B. The full set of permitted dynamics (in the absence
of heat transfer) are the mixtures of identity and negation,
parametrized by a probability of negation α ∈ [0, 1]. Injec-
tions on proper subsets of X are also allowed: for example, we
can specify that 0 maps to 1, without caring what 1 maps to
(though in this case, negation is the only bijective extension).

In summary, the behavior of open systems can be influ-
enced in a variety of ways. Complex controls require careful
accounting, but simple controls and clocks just extend our
modeling capabilities: they allow us to consider systems that
evolve by sequences of deterministic or random bijections on
X , or injections on subsets of X . The transition function at
each time step is sampled from a simply describable distri-
bution. If not too many time steps are taken, then (67) holds
with a high probability. This time-dependent setting is flexible
enough to illustrate a number of phenomena regarding the
thermodynamics of information.

B. Maxwell’s demon

As a warmup to more difficult examples, we now review
the original challenge to the second law [32]. The core ideas
here are not new, but we hope that our simple abstract presen-
tation lends some pedagogical clarity.

In the famous thought experiment, Maxwell’s demon has
a memory that starts in a low-entropy “clear” state 0 ∈ C. It
interacts with a base system that starts in some high-entropy
mesostate x ∈ X . It is helpful to begin with a stylized special
case, in which C = X and the demon is able to reversibly
perform a complete measurement, copying the system’s state
into memory:

(0, x) �→ (x, x).

9Strictly speaking, we should write F : 	 × X → X to express
dependence on an ambient probability space 	. If X is countably
infinite, then there are uncountably many bijections on it, so the prob-
ability measure need not be discrete. Instead, it can be represented
by a uniformly computable sequence of functions 
n : XXn → R,
where Xn ⊂ X consists of the states whose encodings have length at
most n, and XXn is the countable set of functions f̃ : Xn → X . We
take 
n( f̃ ) to be the probability of sampling a function f : X → X
whose restriction to Xn is f̃ . In order to compute the transition
matrix entry P(y, x) from 
, let n = |x|, and enumerate functions
f̃ : Xn → X until their total probability is as close to 1 as desired.
Then P(y, x) is approximately the probability assigned to functions

that satisfy f̃ (x) = y. Since K (P)
+
< K (
), if 
 is simply describable,

then so is P.
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Using its measurement as a control, the demon proceeds to
reversibly erase the base system’s entropy:

(x, x) �→ (x, 0).

Both of these mappings are injective on their respective
domains, {(0, x) : x ∈ X } and {(x, x) : x ∈ X }. Therefore,
they can be extended to bijections on X × X . Since they are
deterministic, Corollary 1 implies the total entropy cannot
change substantially. Indeed,

K (0, x)
+= K (x, x)

+= K (x, 0)
+= K (x).

The net effect is that the base system’s information content
is moved into the demon’s memory. The erasure step uses a
high-entropy control x; as discussed in Sec. V A, its entropy
must be included in the total, for otherwise the base system’s
transition x �→ 0 would appear to violate the second law. The
erasure is permitted precisely because it occurs in the presence
of a copy. The second law forbids the demon from clearing the
last copy remaining in its memory:

(x, 0) �→ (0, 0),

as can also be seen by noting that this map is either not injec-
tive (if defined to work for all x), or not simply describable (if
tailored for a specific x).

Now we present the general case, which includes nearly
all physical models of Maxwell’s demon from the literature.
Suppose the demon performs a partial measurement m(x),
where m is a (possibly random, not necessarily bijective) func-
tion, whose distribution has low description complexity. After
obtaining the measurement, the demon uses it as a control to
transition the system from x to some new (possibly random)
state y:

(0, x) �→ (m(x), x) �→ (m(x), y).

The specifics of y′s computation are not important: as long
as it amounts to a simply describable mixture of bijections,
the second law expressed by (67) holds with high probability.
It expands to

K (m(x), x)
+
< K (m(x), y).

Subtracting K (m(x)) from both sides yields

K (x) − I (m(x) : x) += K (x | m(x)∗)
+
< K (y | m(x)∗)

+= K (y) − I (m(x) : y). (68)

We can interpret the conditional complexities as subjective
entropies, from the point of view of a demon that knows
the measurement m(x). The measurement makes the base
system’s subjective entropy less than its objective (i.e., un-
conditional) entropy.

Now, (68) implies K (x) − K (y)
+
< I (m(x) : x). Consider

the case where the mutual information of measurement
is reversibly erased: “reversibly” meaning K (m(x), x) +=
K (m(x), y), and “erased” meaning I (m(x) : y) += 0. Then, in
fact,

K (x) − K (y)
+= I (m(x) : x).

Thus, although the second law forbids a decrease in the
total entropy, it permits the measured system to lose as much
entropy as was measured from it! There is no contradiction
here: since the algorithmic entropy is subadditive, it is possi-

ble to have simultaneously K (x) � K (y) and K (m(x), x)
+
<

K (m(x), y).
Note that our analysis does not require the completion of

a cycle, nor any ad hoc extension of the definition of entropy.
The algorithmic entropy naturally accounts for both the de-
mon’s memory and the base system, satisfying the second law
of thermodynamics at every step of their evolution.

C. Landauer’s principle

In Sec. IV D we saw that a system can dump its unwanted
entropy into a reservoir as heat. Landauer [27] first discov-
ered this in the context of computer circuitry, arguing that
logically irreversible computations necessarily convert some
energy into waste heat. Neyman [82] followed up with a larger
bound in settings involving irreversible thermal equilibration.
There are now many modern references treating Landauer’s
principle [43,83,84].

We can develop similar ideas in terms of the algorithmic
entropy. Just as (39) decomposes a base system’s entropy gain
into reversible and irreversible parts, we can rearrange (39) to
decompose the environment’s entropy gain into reversible and
irreversible parts:

−�eK (x → y) = �iK (x → y) − �K (x → y). (69)

By (48), the left-hand side is directly proportional to the
heat flow. Its irreversible part is the algorithmic entropy pro-
duction or EP cost �iK . The reversible part is the drop in
base system entropy −�K ; by analogy to its ensemble-based
analog in the stochastic thermodynamics literature [43,85],
we call it the algorithmic Landauer cost. Thus, heat flow is
directly proportional to the sum of EP and Landauer costs.

Equation (69) helps to clarify some common miscon-
ceptions regarding Landauer’s principle [43]. For example,
logical irreversibility need not result in a Landauer cost,
nor in heat flow [except in the deterministic case, where
(61) holds]. Sagawa [41] demonstrates this with a physi-
cal example, though a simpler example suffices: consider a
finite-state Markov chain with the transition matrix P(y, x) :=
1/|X |. Each iteration is logically irreversible, overwriting
the previous value with an independent uniformly distributed
value. Nonetheless, the algorithmic entropy usually stays near
log2 |X |, so the Landauer cost is zero. Since P is doubly
stochastic, it can be implemented without contacting a reser-
voir, so the heat flow is also zero.

Another common mistake is to identify the Landauer cost
with a system’s long-term energy consumption. In reality,
Landauer costs are reversible: for a computer memory whose
entropy is bounded from both above and below, positive and
negative Landauer costs must approximately balance each
other in the long run. That is, we have the long-run homeosta-
sis condition �K ≈ 0, which by (69) implies −�eK ≈ �iK .
By (48), the long-term energy consumption is therefore pro-
portional to the irreversible EP cost:

Q ≈ kBT ln 2 �iK. (70)
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This suggests an interesting accounting trick. The obvious
way to compute the net heat flow Q over a long series of events
is to sum the heat emission or absorption from each individual
event; such a sum may include redundant Landauer costs that
cancel due to opposite signs. Alternatively, (70) says that we
can sum the EP costs of the individual events, and divide by
kBT ln 2. The latter methodology not only avoids redundant
cancellations, but also expresses the energy cost directly in
terms of the algorithmic information-theoretic quantity �iK .

To gain some further intuition, we now examine three
common types of information process: randomization, com-
putation, and measurement. In each case, we ask whether
there is an EP cost, and how that translates to net heat emis-
sion.

First, consider the generation of random data, perhaps to
serve as a seed for a randomized computation. K increases,
corresponding to a negative Landauer cost. In principle, Ben-
nett [48] shows that entropy can be reversibly extracted from a
heat reservoir, cooling it while randomizing a piece of digital
memory. Later, the memory’s entropy can be reversibly re-
turned to the reservoir for a positive Landauer cost, warming
it while clearing the memory. This cycle has zero net heat
flow. Notice that the cooling step is essential: if the memory
collects entropy in an uncontrolled manner, without cooling
the reservoir, then (69) requires the negative Landauer cost to
be offset by a positive EP cost. By the time the memory is
cleared, there will be some net heat emission, as predicted by
(70).

In the second case, consider a long string x resulting from a
deterministic computation. Although x may appear complex,
in reality its entropy K (x) is about as small as the program
that computed it. Only when we ignore the origins of x and
toss it into a stochastic reservoir, is entropy produced. Since
the string was not truly random, we have �K ≈ 0. Thus, the
warming of the reservoir cannot be attributed to Landauer cost
and is in fact an EP cost. In principle, a reversible computer
can avoid EP and heat emission, clearing x by running its
computation in reverse [44,86–88].

Finally, consider sensing or measurement. In Sec. V B we
saw that a memory can reversibly take a measurement of
another object. By interacting again with the same object,
the measurement can be undone at zero cost. On the other
hand, if either copy of the data is lost without them interacting,
either because the memory is overwritten or the source object
changes state, then there is an EP cost.

To see this, consider two arbitrary systems (e.g., a memory
and some object), in the respective states x and y. Using (14),
their total entropy decomposes as

K (x, y) = K (x) + K (y) − I (x : y).

As a result, the entropy production is a sum of three terms:

�iK := �K (x, y) = �K (x) + �K (y) + �( − I (x : y)).
(71)

Substituting into (44) (which again follows from Theorem 7),
we obtain a formulation of the second law that explicitly
accounts for the change in mutual information between the
systems. It is an algorithmic analog of the result by Sagawa
and Ueda [89].

Now, suppose the two systems do not interact, making each
of them an isolated system. Then Theorem B 2 applies to each
system individually: up to minor fluctuations, it says that their
respective entropies K (x) and K (y) are nondecreasing. The-
orem B 3 also applies, saying that I (x : y) is nonincreasing.
Since all three terms in the decomposition (71) are non-
negative, we can view each of them as separate EP costs.
In particular, we conclude that for noninteracting systems,
discarded mutual information is a form of EP.

Whether our aim is to randomize, to compute, or to mea-
sure, the absence of entropy is a resource to be carefully
managed. In the first case, it is exchanged with a heat reser-
voir; in the second, it is encrypted by a computation; and
in the third, it is stored in the mutual information between
two systems. In principle, all these manipulations can be done
reversibly, at zero net cost. However, when there is a mismatch
between our technological mechanism and the information
that it processes, then we pay an EP cost, which ultimately
turns to heat according to (70).

D. An information engine

In the physical world, energy is conserved. When a sys-
tem “consumes” energy, the total energy does not decrease;
instead, it transforms into waste heat. Here (70) equates the
heat Q with the entropy production �iK ; thus, the “resource”
that is consumed is in fact the negentropy (20).

While the utility of negentropy is apparent throughout the
engineering disciplines, it is helpful to see why negentropy
is useful from a purely information-theoretic point of view.
To do so, we model an information-theoretic analog of a
heat engine. Our “information engine” operates in an abstract
Universe of coarse-grained subsystems, with no concept of
reservoirs, energy, or heat. Setting π := � and identifying the
state space of each subsystem with the set of binary strings of
a fixed length, the negentropy (20) of any given state x reduces
to approximately |x| − K (x), the compressibility of x. Thus,
compressible strings are the resource which should power the
engine.

Let the engine have an internal memory system with state
space Bm. Using the self-delimiting encodings (12) and x :=
|x|x, any string x ∈ B∗ that satisfies |x| � m can be encoded
in memory as the concatenation of |x|, x, and a padding of
m − |x| zeros, which we denote by

e(x) := x0m−|x| = |x|x0m−|x| ∈ Bm.

The self-delimiting prefix |x| makes e(x) uniquely decodable
into its three parts.

The engine uses a fixed lossless compression algorithm:
a computable injective function f : B∗ → B∗, whose worst-
case blowup

c := max
x∈B∗

{| f (x)| − |x|}
is much less than m. Since e and f are injective, the mapping

e(x) �→ e( f (x)), (72)

defined on the range of e, is also injective.
If f is not simply describable, we can take it to be pro-

gramed onto a read-only section of memory, acting as a
control in the simply describable joint mapping g : ( f , x) �→

014118-17



ARAM EBTEKAR AND MARCUS HUTTER PHYSICAL REVIEW E 111, 014118 (2025)

TABLE I. One cycle of an information engine’s operation. Its capacity is 120 bits, written as 20 base 64 characters. Incompressible strings
are represented by randomly generated characters. The length prefix and the original copy of the genome are not shown. Every action is
reversible.

Action Information engine Environment segment

Begin PG18Q000000000000000 1ksajddSG45VYummyAlphabetSoup

Burn/clear PG18Q1ksajddSG45V000 000000000000YummyAlphabetSoup

Reproduce PG18Q1ksajddSG45V000 CopyOfGenomeYummyAlphabetSoup

Eat YummyAlphabetSoup000 CopyOfGenomePG18Q1ksajddSG45V

Digest WAiKV000000000000000 CopyOfGenomePG18Q1ksajddSG45V

( f , f (x)). Thus, no generality is lost in assuming K ( f )
+= 0,

which implies

K (x)
+= K ( f (x))

+
< | f (x)|.

Therefore, K (x) sets an optimistic bound on how well the
mapping (72) compresses the data in the memory. When the
compression succeeds, the zero padding lengthens.

We are now ready to describe the engine’s operation.
Compressible strings are its fuel, to be collected from the
environment, while incompressible strings are waste, to be
expelled into the environment. The engine cycles between
three modes:

(1) Consume (“burn”) zeros to perform some task, produc-
ing waste.

(2) Expel waste, and gather (“eat”) fresh fuel in its place.
(3) Refine (“digest”) fuel, producing zeros and a waste

byproduct.
The corresponding transitions to the memory state are sum-

marized in a diagram:

e(x)
burn−−→ e(xy)

eat−→ e(z)
digest−−−→ e( f (z)).

Here x is a small string, perhaps compressed from the
previous cycle. Hence, e(x) has a large zero padding; we
will see shortly how zeros are used to perform useful tasks.
These tasks replace a portion of the padding with some other
string y. If the engine expects x and y to be incompressible, it
treats them as waste. The second stage identifies a promising
location in the environment, where compressible strings might
be found. With one reversible swap, the engine expels xy
and gathers the (hopefully) compressible string z in its place,
with |z| = |x| + |y|. Finally, the third stage refines the fuel
z by compressing it, yielding additional zeros alongside the
byproduct f (z), which takes the role of x when the cycle
resets.

The zeros have many uses. One is that they pay for the
processing of bad fuel: if the string z turns out not to be
compressible after all, then f (z) may actually be longer than
z, overwriting up to c of the zeros. If this happens so often
as to fully deplete the supply of zeros, the engine’s behavior
becomes ill-defined; in that event, we consider it to have
“starved to death.”

Otherwise, zero padding serves as a source of ancilla bits,
fueling irreversible (many-to-one) operations by embedding
them as reversible (one-to-one) operations [83]. Irreversible
operations include data overwrites, error correction, healing,
and repair: each of these maps a larger number of “bad” states
to a smaller number of “good” states. We saw an example of

this in Sec. V B, where the memory of Maxwell’s demon is
the ancilla that enables a transition (0, x) �→ (m(x), y), even
when the second law forbids directly mapping x �→ y. Bennett
[48] offers another example based on adiabatic demagnetiza-
tion, consuming zeros to turn heat into work.

A living organism can use an information engine to support
its growth and reproduction. A direct implementation of these
operations would be irreversible, because they overwrite parts
of the environment with copies of the organism’s data [90].
To get a reversible implementation, the engine can absorb the
data that would be overwritten, into its zero padding. Table I
illustrates such an organism’s operation of an information
engine, for one burn-eat-digest cycle. First, it burns some of
the zero padding to perform a useful function: in this case,
swapping zeros onto a desired target location in the environ-
ment. Now that the target location is cleared, the organism
can reversibly copy any data, such as a genome, onto it. At
this point, the zero padding is almost used up. In order for
the engine to recharge, it swaps in the compressible string
YummyAlphabetSoup from the environment. Compressing
this string restores the padding to a more useful length, main-
taining a kind of internal homeostasis.

We leave comparisons with real-world heat and informa-
tion engines, such as those studied by Leighton et al. [91],
to future work. A fuller analogy might assign energy values
to memory states, similar to the combinatorial reservoirs of
Baumeler et al. [92] and Ebtekar [56].

VI. DISCUSSION

In order to develop ensemble-free definitions of ther-
modynamic quantities, we assembled ideas from stochastic
thermodynamics, dynamical systems, and algorithmic in-
formation theory. The assumption of a Markovian coarse
graining reduces physical systems to time-homogeneous
discrete-state Markov processes. In this setting, stochastic
thermodynamics defines the stochastic and Gibbs-Shannon
entropies in terms of probabilistic ensembles of physical states
[7]. In many instances, these are good practical approxima-
tions of the algorithmic entropy.

To deal with cases where a suitable ensemble descrip-
tion is not available, we propose that thermodynamics be
based on the algorithmic entropy of individual states. Levin’s
[24] randomness conservation law then leads to a nonequi-
librium generalization of the second law of thermodynamics
(Corollary 2). To ensure the accuracy of our conclusions,
we carefully accounted for some ways that information can
“leak,” such as the elapsed time (which allows for Poincaré
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recurrence), and algorithmically complex dynamics (imple-
mented by an exogenous control).

In terms of applications, we found that the algorithmic
second law streamlines the analysis of Maxwell’s demon,
paving the way for thermodynamic analyses of all systems
lacking a natural ensemble description. We followed up with
an AIT perspective on Landauer and EP costs, which we hope
will encourage more research in energy-efficient computing.
In particular, (70) equates the long-term net heat flow with
algorithmic entropy production.

Information-theoretic perspectives on thermodynamics are
gaining traction in the physics of computing [85], biology
[91], and microscopic devices more generally [45]. In light
of the growing focus on fluctuation theorems [14], we hope
to find more applications for the algorithmic fluctuation
inequalities derived from Theorem B 1. These include the
Zurek-Kolchinsky inequality (45), the Jarzynski inequality
(58), and the Landauer inequality (59). In addition, future
work might derive algorithmic versions of stochastic thermo-
dynamics results not studied in this article, such as uncertainty
relations and speed limit theorems [93].

While this article focuses on the second law of thermo-
dynamics, Markov processes are known to satisfy additional
information-theoretic laws. We briefly made use of the infor-
mation nonincrease law (Theorem B 3), which likewise has
a probabilistic version ([18], Sec. 2.8). An interesting conse-
quence of this law is that any mutual information between
systems in the present is traceable to a common cause in
the past. This is a time-reversal asymmetry, perhaps even as
fundamental as the second law; it may help us understand the
perceptual, psychological, epistemic, and causal aspects of the
so-called arrow of time [4,56,94,95].

Causality here is meant not in the time-symmetric sense
commonly associated with Einstein’s relativity, but in the
asymmetric sense of Reichenbach [96], Lewis [97,98], and
Bell [99,100], later refined by Pearl [101]. It generalizes
the Markov property to nonlinear causal topologies. In the
language of physics, the causal Markov property constrains
which spacetime regions X and Y may be statistically corre-
lated, conditional on a third region Z . Janzing and Schölkopf
[102] present an algorithmic causal Markov property, while
Lorenz [103] and the references therein propose quantum ver-
sions. Causal modeling describes interactions between open
systems. Ito and Sagawa [104] apply it to information ther-
modynamics; future work might extend this using AIT.

There is yet another general law to consider. In an effort to
capture the complexity of intricate structures found in living
organisms, Bennett [94,105] defines the logical depth of x,
at significance level s, to be the minimum runtime among
programs, of length up to K (x) + s, that output x. He proves
that the logical depth, if it increases, can only do so slowly.
Thus, logically deep objects, such as genomes, are only cre-
ated by gradual processes over a long span of time. Unlike
entropy, which is maximized in the late Universe, we expect
that logical depth is maximized at intermediate times: late
enough for its gradual accumulation, but not so late as to
be destroyed by heat death [106–108]. Note that both mutual
information and logical depth describe ways in which the ne-
gentropy of a system becomes difficult to extract, demanding

that separated systems be reunited in the former case, and that
a long computation be rewound in the latter.

In future work, it would be interesting to study the in-
teractions between entropy nondecrease, mutual information
nonincrease, logical depth slow increase, and any related laws
that are as yet undiscovered. Together, they seem to charac-
terize the arrow of time, mediating the role of information
in physics, computation, and intelligent life [94]. In light of
the known connections between data compression, inductive
learning, and intelligence [60,61,71], it might be interesting
to study intelligent agent behavior from the perspective of
optimizing information engines along the lines of Sec. V D.

Finally, extending algorithmic thermodynamics to incorpo-
rate quantum information remains a wide open problem. As a
promising start, several quantum analogues of the description
complexity have been proposed, each with different properties
[109–112]. Just as chaos makes classical systems probabilistic
(see Appendix A), decoherence makes quantum systems be-
have like mixed channels ([16], Sec. 6.2 and [38,40,113,114]),
which might help explain their irreversibility.
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APPENDIX A: A MARKOVIAN COARSE GRAINING

No discussion of the second law would be complete
without addressing the fundamental modeling assumptions re-
sponsible for the asymmetry between past and future. To sim-
plify matters, consider the doubly stochastic case, correspond-
ing to a phase space partitioned into cells of equal Liouville
measure. The time reversal of a deterministic doubly stochas-
tic process is again doubly stochastic; by Corollary 1, its en-
tropy can neither increase nor decrease at an appreciable rate.

Randomness breaks the symmetry: given a time-
homogeneous doubly stochastic process, its time reversal
need not be time-homogeneous nor double stochastic [115].
This matches our real-life macroscopic experience, where
forward evolutions follow localized statistical laws, but
backward evolutions do not. For example, a glass vase in
free fall will shatter at a predictable time; and while the final
arrangement of its pieces is chaotic and hard to predict, we
can expect it to follow a well-defined statistical distribution.
Moreover, our statistical prediction would not depend on any
prior or concurrent happenings, e.g., at the neighbor’s house.

In contrast, consider the time-reversed view, where we
see a broken vase and want to retrodict its time of impact.
It is hard to make even a meaningful statistical prediction.
Our best attempt would be based on principles beyond the
localized physics: for example, we might take into account a
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conversation at the neighbor’s house, telling of the accident.
In the reverse dynamics, distant shards begin to converge
simultaneously, in apparent violation of locality.

Experience suggests that time-homogeneous Markov pro-
cesses, despite their asymmetry, are good models of real
macroscopic systems. Meanwhile, the fundamental micro-
scopic laws of nature are widely believed to be deterministic
and CPT symmetric [1]. How, then, can nature’s coarse-
grained evolution violate this symmetry?

To demonstrate the plausibility of such an emergent asym-
metry, we construct a system for which it occurs. Gaspard [30]
defines the multibaker map: a deterministic time-reversible
dynamical system that, when suitably coarse-grained, emu-
lates a random walk. Altaner and Vollmer [8] generalize the
multibaker map to emulate arbitrary Markov chains. To con-
vey their idea in an easier fashion, we now present multibaker
maps at an intermediate level of generality.

Fix an integer m > 1. We augment the coarse-grained state
space X with a bi-infinite sequence of Zm-valued microvari-
ables, so that the total fine-grained state space is X × (Zm)Z.
Every individual fine-grained state can be written in the form

(x, (. . . , r−2, r−1, r0, r1, r2, . . .)),

where x ∈ X is the coarse-grained part, and the ri ∈ Zm col-
lect the remaining fine-grained information. Alternatively, we
can rearrange the variables and punctuation into

(x.r−1r−2r−3 . . . , 0.r0r1r2 . . .).

The “0.” here is purely symbolic. If we were to identify X with
Z, the latter notation is suggestive of the base m representation
of a point in the two-dimensional “phase space” R × [0, 1].
There is an extensive literature that studies symbolic represen-
tations as proxies for continuous chaotic dynamical systems;
for theory and examples, see Lind and Marcus [116].

At each discrete time step, the system evolves by a de-
terministic and reversible two-stage transformation. The first
stage shifts all of the ri by one position; we think of it as
emulating microscopic chaos. The second stage applies a fixed
bijection of X × Zm to the pair (x, r0); we think of it as
emulating the coarse-grained physics. In summary:

(x.r−1r−2r−3 . . . , 0.r0r1r2 . . .)

shift−−→ (x.r0r−1r−2 . . . , 0.r1r2r3 . . .)

transform−−−−→ (x′.r′
0r−1r−2 . . . , 0.r1r2r3 . . .).

The system’s only source of randomness is its initial condi-
tion. At the start time t = 0, we allow x to have any chosen
distribution, but require the ri to be uniformly distributed, with
all of the variables being independent. We can think of ri ∈
Zm as an m-sided die used to emulate a stochastic transition
of x at the time t = i. In the coarse-grained view, where we
marginalize all of the ri, it is easy to verify that x′s trajectory is
a time-homogeneous doubly stochastic Markov chain, whose
transition matrix entries are all multiples of 1/m. It follows
from Corollary 2 that S�(x) = K (x) is nondecreasing up to
minor fluctuations.

In fact, our multibaker map can emulate all such Markov
chains, by a suitable choice of the bijection T : (x, r0) �→
(x′, r′

0). Indeed, recall that a Markov chain’s distribution is

uniquely determined by its initial condition and transition
matrix. Since we already allow the initial distribution of x to
be arbitrary, it remains only to emulate the doubly stochastic
matrix P. Since its entries are multiples of 1/m, we need only
to assign each pair x, y ∈ X to each other with multiplicity
m · P(y, x). One way to accomplish this is to fix any total
order < on X , and let

T

⎛⎝x, i + m
∑
z<y

P(z, x)

⎞⎠ :=
(

y, i + m
∑
z<x

P(y, z)

)

∀x, y ∈ X , i ∈ Zm·P(y, x).

Thus, quite a diverse class of Markov chains arise as the
coarse-grained part x of some multibaker map. In particular,
this construction realizes every example of a doubly stochastic
Markov chain in this article as a deterministic time-reversible
map, by appending the microvariables ri to its state.

The full construction by Altaner and Vollmer [8] relaxes
the requirement that P be doubly stochastic, or that its entries
have a common denominator m. The unpublished manuscript
by Ebtekar [56] does the same in a different manner, and re-
laxes the requirement that the ri be uniform and independent:
provided that the fine-grained state starts with a continuous
distribution, it is shown that the dynamics eventually stabi-
lize to become Markovian, time-homogeneous, and doubly
stochastic. Thus, any sufficiently smooth initial distribution
may serve as Albert’s [3] Past Hypothesis. Ebtekar and Hutter
[4,56] provide further extensions to model causal interactions.

While these conclusions are only proven for variants of the
multibaker maps, they are highly suggestive of techniques that
we might try extending to realistic systems. Gaspard ([17],
Sec. 4.8) suggests that we should seek a short-term ergodic
property of the state’s microscopic part, occuring on a much
faster time scale than macroscopic ergodicity. Given a suitable
coarse graining, the goal would be to prove fast convergence
to Markovian behavior, long before the slower but better-
understood convergence to maximum entropy. In this manner,
we hope to establish the second law of thermodynamics as
a mathematically rigorous property of real, CPT-symmetric
systems.

APPENDIX B: CONSERVATION OF RANDOMNESS

To state the needed mathematical results in full generality,
we allow the reference measure π to be nonstationary. Denot-
ing the probability of each state transition x → y by P(y, x),
the algorithmic entropy production is defined by

SPπ (y | P̃) − Sπ (x | P̃),

where Pπ , P̃ and Sπ are given by (4), (5), and (18), respec-
tively.

Before going into formal proofs, we sketch some intuition
for why we expect the entropy production to be positive.
For notational convenience, let x∗ := (x, K (x)) and x∗

z :=
(x, K (x | z)). Using (20), define the conditional randomness
deficiency

dP(y | x) := JP(·, x)(y | x∗) = log2
1

P(y, x)
− K (y | x∗).
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Omitting the conditioning on P̃ for brevity, the algorithmic
entropy production during a state transition x → y can be
expressed as

SPπ (y) − Sπ (x) = K (y) − K (x) + log2
Pπ (y)

π (x)

= K (y) − K (x) + log2
P(y, x)

P̃(x, y)

+= K (y | x∗) − K (x | y∗) + log2
P(y, x)

P̃(x, y)

= dP̃(x | y) − dP(y | x).

From the last line’s symmetry, one might guess that the
entropy production is equally likely to be positive or negative.
However, note that in general,

Pr(y | x) = P(y, x), whereas Pr(x | y) �= P̃(x, y).

While randomness deficiencies typically satisfy dP(y | x) ≈ 0,
under the mismatched backward probabilities we may have
dP̃(x | y) � 0. Thus, the algorithmic entropy production mea-
sures the extent to which x is an “atypical” predecessor of
y, when viewed as a sample from P̃(·, y). For example, a
low-entropy initial state x would be highly atypical for the
doubly stochastic matrix P(y, x) = P̃(x, y) = 1/|X |, so the
expected entropy production is high in this case.

Our formal proofs are based on the following lemma. Like
the conditional randomness deficiency, f (y, x) here can be
interpreted as a conditional test of P randomness for y, given
some data g(x). When f (y, x) is large, a statistician would
reject the claim that y was sampled from the distribution
P(·, x) ([49], Sec. 4.3.5 and [68,69]). Note that neither f nor
g are required to be computable.

In the physical interpretation, we will see that − f (y, x)
generalizes the role of entropy production during a state tran-
sition x → y. Lemma B 1 says that the detailed fluctuation
inequality (B1) implies the integral fluctuation inequalities
(B2), the mean bounds (B3), and the tail bound (B4). Thus,
for any f , proving (B1) is sufficient to conclude the rest.

Lemma B1. Let X,Y be X ,Y-valued random variables,
and write P(y, x) := Pr(Y = y | X = x). Let f : Y × X → R
and g : X → B∗ be any functions satisfying

∀x ∈ X , y ∈ Y, f (y, x) � log2
1

P(y, x)
− K (y | g(x)).

(B1)
Then

〈2 f (Y, X ) | X 〉 < 1, 〈2 f (Y, X )〉 < 1, (B2)

〈 f (Y, X ) | X 〉 < 0, 〈 f (Y, X )〉 < 0, (B3)

and for δ > 0, with probability greater than 1 − δ,

f (Y, X ) < log2
1

δ
. (B4)

If instead (B1) holds with
+
<, then so do (B3) and (B4), and

(B2) then holds with
×
<.

Proof. Rearranging (B1),

log2 P(y, x) + f (y, x) � −K (y | g(x)).

To get (B2), apply Kraft’s inequality (13):

〈2 f (Y, X ) | X 〉 :=
∑
y∈Y

P(y, X ) 2 f (y, X ) �
∑
y∈Y

2−K (y|g(X )) < 1.

To get (B3), apply Jensen’s inequality:

〈 f (Y, X ) | X 〉 � log2〈2 f (Y, X ) | X 〉 < 0.

The unconditional versions of (B2) and (B3) follow from the
law of total expectation. Finally, let δ > 0. Markov’s inequal-
ity on (B2) implies that, with probability greater than 1 − δ,

2 f (Y, X ) <
1

δ
.

Taking logarithms now yields (B4). The case with
+
< follows

similarly. �
As a first application of Lemma B 1, consider the case

where X is constant, Y is distributed in proportion to some
system’s stationary distribution π , and g(·) := P̃ (i.e., g is a
constant function that outputs a program computing P̃). Then
the right-hand side of (B1) reduces to the negentropy (20), and
the conclusion (B4) agrees with (21).

Next, we turn to general nonequilibrium dynamics. We
present detailed fluctuation inequalities for the change in each
of the quantities K , π , Sπ , and I .

Theorem B 1 (Detailed fluctuations). Let π : X → R+ \
{0} be a measure. When they appear as side information,
suppose P : Y × X → R+ and P̃ from (5) are computable.
Then, for all x ∈ X , y ∈ Y , and z ∈ B∗,

K (y | P) − K (x | P)
+
< log2

1

P(y, x)
− K (x | y∗

P, P), (B5)

log2 π (x) − log2 Pπ (y)
+
< log2

1

P(y, x)
− K (x | y, P̃), (B6)

Sπ (x | P̃) − SPπ (y | P̃)
+
< log2

1

P(y, x)
− K (y | x∗

P̃, P̃),

(B7)

I (y : z | P) − I (x : z | P)
+
< log2

1

P(y, x)
− K (y | (x, z)∗P, P).

(B8)

Proof. For each x, P(·, x) is a probability measure com-
putable by a constant-sized program along with (x, P);
similarly, P̃(·, y) can be computed using (y, P̃). Hence, (16)
implies

K (y | x, P)
+
< log2

1

P(y, x)
, K (x | y, P̃)

+
< log2

1

P̃(x, y)
.

Now, we verify the inequalities one at a time. (B5) follows
from

K (x | y∗
P, P)

+= K (x, y | P) − K (y | P)

+
< K (y | x, P) + K (x | P) − K (y | P)

+
< log2

1

P(y, x)
+ K (x | P) − K (y | P).
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Similarly, (B6) follows from

K (x | y, P̃)
+
< log2

1

P̃(x, y)

= log2
1

P(y, x)
+ log2 Pπ (y) − log2 π (x).

The proof of (B7) combines the steps of the previous
derivations:

K (y | x∗
P̃, P̃)

+= K (x, y | P̃) − K (x | P̃)

+
< K (x | y, P̃) + K (y | P̃) − K (x | P̃)

+
< log2

1

P̃(x, y)
+ K (y | P̃) − K (x | P̃)

= log2
1

P(y, x)
+ SPπ (y | P̃) − Sπ (x | P̃).

Expression (B8) was first shown by Gács et al. [70], but we
present a simpler proof based on Gács [31]. Applying the
algorithmic data processing identity (15) twice,

K (y | (x, z)∗P, P)
+= K (y | x∗

P, P) − I (y : z | x∗
P, P)

+= K (y | x∗
P, P)+I (x : z|P)−I ((x, y) : z|P)

+
< log2

1

P(y, x)
+ I (x : z | P) − I (y : z | P).

�
Theorem B 1 says that if a transition x → y occurs with

substantial probability P(y, x), then it cannot substantially de-
crease the Liouville measure π or the algorithmic entropy Sπ ,
nor can it substantially increase the description complexity
K or the algorithmic mutual information I (with respect to
any fixed object z). This does not imply that the quantities
trend monotonically, since a large number of low-probability
transitions may still sum to a high probability.

For example, consider a Markov chain that alternates be-
tween a “hub” state, and a uniformly random selection among
a large number m of other states. Formally, let X := Zm+1; for
x, y = 1, . . . , m, let

π (0) := m, π (x) := 1, P(0, 0) := 0,

P(y, 0) := 1/m, P(0, x) := 1, P(y, x) := 0.

Then P is π -stochastic. The hub state has K (0 | P̃)
+= 0, while

most of the other states have K (x | P̃)
+= log2 m. Therefore,

both π and K are highly nonmonotonic, taking turns alternat-
ing between a much lower and a much higher value.

On the other hand, it is easy to check that the hub state,
as well as most of the other states, have approximately
log2 m entropy. There are a few states with low entropy:

for example, Sπ (1 | P̃)
+= log2 π (1) = 0. If we start from

such a state, the entropy will immediately increase to about
log2 m, and we will seldom return to these rare low-entropy
states.

In general, Sπ and I may fluctuate a bit but, unlike π and
K , they trend monotonically. The nondecrease law for Sπ is
known as randomness conservation, while the nonincrease
law for I is called information nonincrease. Both were first

shown by Levin [24]. Our statement and proof take after the
more pedagogical exposition of Gács [31], though we make
additional changes. One is that we have extracted Lemma
B 1 as a general tool, to derive these integral fluctuation in-
equalities from their detailed counterparts. Another is that
we condition on the dual matrix P̃, to eliminate some error
terms from the older results. To eliminate P̃ altogether, see
Sec. IV E.

Note that in the main body of this article, we always have
X = Y and Pπ = π . Using (5), it follows that P̃ is com-
putable if both π and P are.

Theorem B2 (Randomness conservation). Let π :
X → R+ \ {0} be a measure and X,Y be X ,Y-valued
random variables. Suppose P̃, defined in terms of
P(y, x) := Pr(Y = y | X = x) by (5), is computable. Then〈

2Sπ (X |P̃)−SPπ (Y |P̃)
〉 ×
< 1.

Therefore, for δ > 0, with probability greater than 1 − δ,

Sπ (X | P̃) − SPπ (Y | P̃)
+
< log2

1

δ
.

Proof. Let f (x, y) := Sπ (x | P̃) − SPπ (y | P̃) and g(x) :=
(x∗

P̃
, P̃). Then (B7) from Theorem B 1 implies that the

hypotheses of Lemma B 1 hold, and therefore so do its
conclusions. �

Finally, physical applications motivate us to frame the
information nonincrease law in terms of two independently
evolving systems.

Theorem B3 (Information nonincrease). For i = 1, 2, let
Pi : Yi × Xi → R+ be computable stochastic matrices, and
Xi,Yi be Xi,Yi-valued random variables, such that for all
xi ∈ Xi and yi ∈ Yi,

Pr ((Y1,Y2) = (y1, y2) | (X1, X2) = (x1, x2))

= P1(y1, x1)P2(y2, x2).

Then, writing P := (P1, P2),〈
2I (Y1:Y2|P)−I (X1:X2|P)〉 ×

< 1.

Therefore, for δ > 0, with probability greater than 1 − δ,

I (Y1 : Y2 | P) − I (X1 : X2 | P)
+
< log2

1

δ
.

Proof. The pair P can be affixed with a constant-sized
instruction to compute either P1 or P2. Applying (B8) from
Theorem B 1 twice, first with z = x2 and then with z = y1:

I (y1 : x2 | P) − I (x1 : x2 | P)

+
< log2

1

P1(y1, x1)
− K (y1 | (x1, x2)∗P, P),

I (y1 : y2 | P) − I (y1 : x2 | P)

+
< log2

1

P2(y2, x2)
− K (y2 | (y1, x2)∗P, P)

+
< log2

1

P2(y2, x2)
− K (y2 | (y1, x1, x2)∗P, P).
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Summing these inequalities yields

I (y1 : y2 | P) − I (x1 : x2 | P)
+
< log2

1

P1(y1, x1)P2(y2, x2)
− K (y1, y2 | (x1, x2)∗P, P).

Let f ((x1, x2), (y1, y2)) := I (y1 : y2 | P) − I (x1 : x2 | P) and g((x1, x2)) := ((x1, x2)∗P, P). The desired result now follows from
Lemma B 1. �
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Kardeş, J. Aimone, V. Balasubramanian, E. de Giuli, D. Doty
et al., Proc. Natl. Acad. Sci. USA 121, e2321112121 (2024).

[86] P. M. B. Vitányi, in Proceedings of the 2nd Conference on
Computing Frontiers (ACM Press, New York, NY, 2005), pp.
435–444.

[87] E. D. Demaine, J. Lynch, G. J. Mirano, and N. Tyagi, in
Proceedings of the 2016 ACM Conference on Innovations in

Theoretical Computer Science (ACM Press, New York, NY,
2016), pp. 321–332.

[88] K. Morita, Theory of Reversible Computing, Monographs in
Theoretical Computer Science. An EATCS Series (Springer,
Tokyo, 2017).

[89] T. Sagawa and M. Ueda, Phys. Rev. Lett. 109, 180602
(2012).

[90] S. D. Devine, Biosystems 140, 8 (2016).
[91] M. P. Leighton, J. Ehrich, and D. A. Sivak, Phys. Rev. X 14,

041038 (2024).
[92] Ä. Baumeler, C. Rieger, and S. Wolf, in Proceedings of the

2022 IEEE Information Theory Workshop (ITW) (IEEE, Pis-
cataway, NJ, 2022), pp. 362–367.

[93] V. T. Vo, T. Van Vu, and Y. Hasegawa, Phys. Rev. E 102,
062132 (2020).

[94] C. H. Bennett, Physical Origins of Time Asymmetry, 33
(1994).

[95] D. H. Wolpert and J. Kipper, Entropy 26, 170 (2024).
[96] H. Reichenbach, The Direction of Time (University of Califor-

nia Press, Oakland, CA, 1956), Vol. 65.
[97] D. Lewis, J. Philos. 70, 556 (1973).
[98] D. Lewis, Noûs 13, 455 (1979).
[99] J. S. Bell, Epistemol. Lett. 9, 11 (1975).

[100] J. S. Bell, Epistemol. Lett. 15, 79 (1977).
[101] J. Pearl, Causality, 2nd ed. (Cambridge University Press,

Cambridge, UK, 2009).
[102] D. Janzing and B. Schölkopf, IEEE Trans. Inf. Theory 56,

5168 (2010).
[103] R. Lorenz, Synthese 200, 424 (2022).
[104] S. Ito and T. Sagawa, Phys. Rev. Lett. 111, 180603 (2013).
[105] C. H. Bennett, The Universal Turing Machine: A Half-Century

Survey (Oxford University Press, 1988), pp. 227–257.
[106] L. Antunes, L. Fortnow, D. V. Melkebeek, and V. N. Variyam,

Theor. Comput. Sci. 354, 391 (2006).
[107] S. Aaronson, S. M. Carroll, and L. Ouellette, arXiv:1405.6903.
[108] K. J. Jeffery and C. Rovelli, Trends Neurosci. 43, 467

(2020).
[109] A. Berthiaume, W. V. Dam, and S. Laplante, J. Comput. Syst.

Sci. 63, 201 (2001).
[110] P. Gács, in Proceedings of the 16th Annual IEEE Conference

on Computational Complexity (IEEE, New York, 2001), pp.
274–283.

[111] P. M. B. Vitányi, IEEE Trans. Inf. Theory 47, 2464 (2001).
[112] C. E. Mora, H. J. Briegel, and B. Kraus, Int. J. Quantum Inf.

05, 729 (2007).
[113] A. Peres, Phys. Rev. A 30, 1610 (1984).
[114] M. A. Schlosshauer, Decoherence: And the Quantum-to-

Classical Transition (Springer Science & Business Media,
New York, 2007).

[115] T. M. Cover, Physical Origins of Time Asymmetry, 98 (1994).
[116] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics

and Coding, 2nd ed. (Cambridge University Press, Cambridge,
UK, 2021).

014118-24

https://arxiv.org/abs/cs/0410002
https://doi.org/10.3390/e13061076
https://doi.org/10.1109/TIT.2004.838346
https://doi.org/10.1016/j.tcs.2005.03.054
https://doi.org/10.1214/23-STS894
https://arxiv.org/abs/2410.23614
https://doi.org/10.1109/18.945257
https://doi.org/10.1145/321832.321839
https://link.springer.com/chapter/10.1007/978-0-387-84816-7_1
https://doi.org/10.22331/q-2020-07-20-301
https://doi.org/10.1109/TIT.2019.2934454
https://doi.org/10.1070/RM1983v038n04ABEH004203
https://doi.org/10.1063/1.1750386
https://doi.org/10.1038/341119a0
https://doi.org/10.1007/BF02033637
https://doi.org/10.1088/1742-5468/2014/03/P03025
https://doi.org/10.1073/pnas.2321112121
https://doi.org/10.1103/PhysRevLett.109.180602
https://doi.org/10.1016/j.biosystems.2015.11.008
https://doi.org/10.1103/PhysRevX.14.041038
https://doi.org/10.1103/PhysRevE.102.062132
https://doi.org/10.3390/e26020170
https://doi.org/10.2307/2025310
https://www.jstor.org/stable/2215339
https://doi.org/10.1109/TIT.2010.2060095
https://doi.org/10.1007/s11229-022-03887-5
https://doi.org/10.1103/PhysRevLett.111.180603
https://doi.org/10.1016/j.tcs.2005.11.033
https://arxiv.org/abs/1405.6903
https://doi.org/10.1016/j.tins.2020.04.008
https://doi.org/10.1006/jcss.2001.1765
https://doi.org/10.1109/18.945258
https://doi.org/10.1142/S0219749907003171
https://doi.org/10.1103/PhysRevA.30.1610

