
HIGH-LEVEL PLANNING

WITH EXPERIENCE GRAPHS

Aram Ebtekar, Maxim Likhachev

Motivation

 AI “dream”: oracle that solves all problems!

 Is this reasonable? Are humans oracles?

 Recent trend across AI/robotics:

 Learning from experience, solution reuse

 Next time a similar problem appears, find better

solutions faster

 Requires knowledge representation

Abstract Representation

 A plan is a path from start to goal

 Graph is implicitly represented in STRIPS form:

 𝐴 = set of atoms: ON A B, ONTABLE B, HOLDING C

 2𝐴 = set of nodes or states

 𝑂𝑝 = (𝑃, 𝐴, 𝐷) is an action with sets of atoms

designated as preconditions, add and delete effects,

corresponding to edges: STACK A B, PICKUP C

 Transition: 𝑆, 𝑃, 𝐴, 𝐷 → 𝑆 ∪ 𝐴 ∖ 𝐷 if 𝑆 ⊇ 𝑃

 We’re at a goal iff 𝑆 ⊇ 𝐺

Heuristic Search Planner

 Admissible relaxation: ignore delete lists

 Estimate cost to achieve individual atoms

 𝑔𝑆 𝑎 = 1 +min
𝑂𝑝

𝑔𝑆(𝑃) where 𝑂𝑝 adds 𝑎

 For sets of atoms, use 𝑔𝑆 𝑃 = max
𝑝∈𝑃

𝑔𝑆(𝑝)

 Heuristic estimate to goal: ℎ 𝑆 = 𝑔𝑆(𝐺)

 Do forward weighted A*

 When generating 𝑆, need to compute 𝑔𝑆(𝑎)

 Use dynamic programming

Experience Graphs

 Originally developed for explicit graphs by SBPL

 Store edges from previously generated paths

 Inflate non E-graph edges by 𝜖𝐸 to bias search

 ℎ𝐸 𝑆 = min
𝜋
 min 𝜖𝐸ℎ 𝑠𝑖 , 𝑠𝑖+1 , 𝑐

𝐸 𝑠𝑖 , 𝑠𝑖+1𝑖

over all paths 𝜋 = 〈𝑆 = 𝑠0, 𝑠1, 𝑠2, … , 𝑠𝑁 = 𝐺〉

 𝜖ℎ𝐸 is 𝜖𝜖𝐸-consistent provided ℎ is consistent

 But how can we compute ℎ𝐸 in STRIPS?

 Answer: reverse Dijkstra from 𝐺 on the E-graph!

STRIPS E-Graphs

 Preprocessing phase:

 Let 𝑁𝐸 = all E-graph nodes, plus minimal goal state 𝐺

 Run DP to compute 𝑔𝐶(𝑎) for every state C ∈ 𝑁𝐸

 Now we have pairwise distance estimates 𝑔𝐶(𝐷)

 Reverse Dijkstra from 𝐺 with E-graph and 𝜖𝐸𝑔 edges

 When generating 𝑆 ∉ 𝑁𝐸:

 ℎ𝐸 𝑆 = min
𝜋
 min 𝜖𝐸ℎ 𝑠𝑖 , 𝑠𝑖+1 , 𝑐

𝐸 𝑠𝑖 , 𝑠𝑖+1𝑖

 Computable by ℎ𝐸 𝑆 = min
C∈𝑁E

𝜖𝐸𝑔𝑆 𝐶 + ℎ𝐸 𝐶

Analysis

 ℎ𝐸 𝑆 = min
C∈𝑁E

𝜖𝐸𝑔𝑆 𝐶 + ℎ𝐸(𝐶)

 𝜖ℎ𝐸 is 𝜖𝜖𝐸-consistent, so solution is 𝜖𝜖𝐸-optimal

 For large 𝜖𝐸, after generating a node with a direct

E-path to goal, only E-graph nodes are expanded

 Experimental analysis… coming soon!

Extensions for Future Work

 Generalize E-graph actions by projections

 Can “partially inflate” non E-graph edges according to

some similarity measure against E-graph edges

 To a limited extent, ℎ already acts as such a measure

 What to do when E-graph gets big?

 “Forget” edges which have not helped recently

 Combine with other planning methods

 Anytime incremental planning with variable-cost actions

 Less straightforward: GRT, abstraction heuristics, etc.

References

 Mike Phillips, Benjamin Cohen, Sachin Chitta and Maxim

Likhachev, "E-Graphs: Bootstrapping Planning with

Experience Graphs," Proceedings of the Robotics: Science

and Systems Conference (RSS), 2012.

 Blai Bonet and Héctor Geffner, "Planning as heuristic

search," Artificial Intelligence 129.1 (2001): 5-33.

 Our in-progress code based on the previous paper:

https://github.com/EbTech/HSP2

https://github.com/EbTech/HSP2
https://github.com/EbTech/HSP2

