HIGH-LEVEL PLANNING
WITH EXPERIENCE GRAPHS



Motivation

Al “dream”: oracle that solves all problems!
s this reasonable? Are humans oracles?

Recent trend across Al /robotics:
Learning from experience, solution reuse

Next time a similar problem appears, find better
solutions faster

Requires knowledge representation



Abstract Representation

A plan is a path from start to goal

Graph is implicitly represented in STRIPS form:
A = set of atoms: ON A B, ONTABLE B, HOLDING C
24 = set of nodes or states

Op = (P, A, D) is an action with sets of atoms

designated as preconditions, add and delete effects,
corresponding to edges: STACK A B, PICKUP C

Transition: (S, (P, A,D)) - SUA\DifS2P
We're at a goal iff S 2 G



Heuristic Search Planner

Admissible relaxation: ignore delete lists

Estimate cost to achieve individual atoms
gs(a) =1+ ngin gs(P) where Op adds a
D

For sets of atoms, use gS(P) = meag( Js(p)
p

Heuristic estimate to goal: h(S) = g<(G)
Do forward weighted A*
When generating S, need to compute gs(a)

Use dynamic programming



Experience Graphs

Originally developed for explicit graphs by SBPL

Store edges from previously generated paths

Inflate non E-graph edges by € to bias search
h®(S) = min Zimin{eEh(si ,Siv1)s €5 (Si,Siv1)}
over all pa;Ths T = (S = Sp,S1,Sy, ..., Sy = @)
eht is eet

But how can we compute h” in STRIPS?

Answer: reverse Dijkstra from G on the E-graph!

-consistent provided h is consistent



STRIPS E-Graphs

Preprocessing phase:
Let NE = all E-graph nodes, plus minimal goal state G
Run DP to compute g.(a) for every state C € NE
Now we have pairwise distance estimates g, (D)

Reverse Dijkstra from G with E-graph and €® g edges
When generating S & N*:

h%(S) = min Y;; min{e®h(s;,s;41), cZ(s;i,Siv1)}
TT

Computable by hZ(S) = énlivr%(eEgS(C) + hE(0))
€



Analysis

RE(S) = min(e”gs(C) + h*(C))

eht is ee” -consistent, so solution is ee” -optimal

For large €%, after generating a node with a direct
E-path to goal, only E-graph nodes are expanded

Experimental analysis... coming soon!



Extensions for Future Work

Generalize E-graph actions by projections

Can “partially inflate” non E-graph edges according to
some similarity measure against E-graph edges

To a limited extent, h already acts as such a measure
What to do when E-graph gets big?

“Forget” edges which have not helped recently
Combine with other planning methods

Anytime incremental planning with variable-cost actions

Less straightforward: GRT, abstraction heuristics, etc.



References

Mike Phillips, Benjamin Cohen, Sachin Chitta and Maxim
Likhachev, "E-Graphs: Bootstrapping Planning with

Experience Graphs," Proceedings of the Robotics: Science
and Systems Conference (RSS), 201 2.

Blai Bonet and Héctor Geffner, "Planning as heuristic
search,” Artificial Intelligence 129.1 (2001): 5-33.

Our in-progress code based on the previous paper:


https://github.com/EbTech/HSP2
https://github.com/EbTech/HSP2

